High-Performance Computing

  • R. J. Allan
  • M. F. Guest
  • A. D. Simpson
  • D. S. Henty
  • D. A. Nicole

Table of contents

  1. Front Matter
    Pages i-xiii
  2. The U.K. High-Performance Computing Initiative

    1. Front Matter
      Pages 1-1
    2. R. J. Allan, M. F. Guest, A. D. Simpson, D. S. Henty, D. A. Nicole
      Pages 3-9
    3. Alan D. Simpson, David S. Henty
      Pages 11-20
    4. R. J. Allan, I. J. Bush, K. Kleese, A. G. Sunderland, M. F. Guest
      Pages 21-32
    5. Denis Nicole, Kenji Takeda, Ivan Wolton, Simon Cox
      Pages 33-41
  3. Optimisation, Algorithms and Software

    1. Front Matter
      Pages 43-43
    2. Stephen Booth
      Pages 45-52
    3. Darren J. Kerbyson, Efstathios Papaefstathiou, John S. Harper, Stewart C. Perry, Graham R. Nudd
      Pages 57-67
    4. K. Murphy, M. Clint, R. H. Perrott
      Pages 69-78
    5. Patrick Amestoy, Iain Duff, Jean Yves L’Excellent, Petr Plecháč
      Pages 79-90
    6. M. Cross, K. McManus, S. P. Johnson, C. S. Ierotheou, C. Walshaw, C. Bailey et al.
      Pages 91-102
    7. Kenji Takeda, Ivan Wolton, Denis Nicole
      Pages 119-125
  4. Materials Chemistry and Simulation

    1. Front Matter
      Pages 135-135
    2. G. Ackland, D. Bird, P. Bristowe, M. Finnis, M. J. Gillan, N. M. Harrison et al.
      Pages 137-146
    3. W. M. Temmerman, B. L. Gyorffy, Z. Szotek, O. K. Andersen, O. Jepsen
      Pages 147-154
    4. B. Hourahine, R. Jones, S. Öberg, R. C. Newman, P. R. Briddon, E. Roduner
      Pages 155-163
    5. W. M. C. Foulkes, M. Nekovee, R. L. Gaudoin, M. L. Stedman, R. J. Needs, R. Q. Hood et al.
      Pages 165-174
    6. I. Morrison, S. Jenkins, J. C. Li, D. K. Ross
      Pages 175-184
    7. S. I. Jury, P. Bladon, S. Krishna, M. E. Gates
      Pages 185-192
    8. Mark R. Wilson, Michael P. Allen, Maureen P. Neal, Christopher M. Care, Douglas J. Cleaver
      Pages 193-202
    9. J. Coomer, A. Resende, P. R. Briddon, S. Öberg, R. Jones
      Pages 203-206
    10. Z. Szotek, W. M. Temmerman, A. Svane, H. Winter, S. V. Beiden, G. A. Gehring et al.
      Pages 207-212
  5. Computational Chemistry

    1. Front Matter
      Pages 213-213
    2. David A. Dixon, Thom H. Dunning Jr., Michel Dupuis, David Feller, Deborah Gracio, Robert J. Harrison et al.
      Pages 215-228
    3. Matthew D. Cooper, Julia M. Goodfellow, Ian H. Hillier, Christopher A. Reynolds, W. Graham Richards, Michael A. Robb et al.
      Pages 229-236
    4. C. J. Adam, S. J. Clark, G. J. Ackland, J. Crain
      Pages 249-258
    5. M. F. Guest, P. Sherwood, J. A. Nichols
      Pages 259-272
  6. Atomic Physics

    1. Front Matter
      Pages 273-273
    2. K. T. Taylor, J. S. Parker, E. S. Smyth
      Pages 275-284
    3. J. Rasch, Colm T. Whelan, S. P. Lucey, H. R. J. Walters
      Pages 285-291
    4. A. Sunderland, P. G. Burke, V. M. Burke, C. J. Noble
      Pages 293-300
    5. J. Rasch, Colm T. Whelan
      Pages 301-305
    6. Hamse Y. Mussa, Jonathan Tennyson, C. J. Noble, R. J. Allan
      Pages 307-314
  7. Environmental Modelling

    1. Front Matter
      Pages 315-315
    2. Lois Steenman-Clark, Alan O’Neill
      Pages 317-324
    3. Beverly A. de Cuevas, David J. Webb, Andrew C. Coward, Catherine S. Richmond, Elizabeth Rourke
      Pages 325-335
    4. Alan Gadian, Ian Stromberg, Robert Wood
      Pages 347-357
    5. Roger Proctor, Peter Lockey, Ian D. James
      Pages 359-364
    6. Alan D. Fox, Keith Haines, Beverly A. de Cuevas, Andrew C. Coward
      Pages 365-369
    7. Alfred Geiger, Roland Rühle
      Pages 379-384
    8. K. J. Badcock, G. S. L. Goura, B. E. Richards
      Pages 385-394
    9. Karl W. Jenkins, W. Kendal Bushe, Laurent L. Leboucher, R. Stewart Cant
      Pages 395-405

About this book


Over the past decade high performance computing has demonstrated the ability to model and predict accurately a wide range of physical properties and phenomena. Many of these have had an important impact in contributing to wealth creation and improving the quality of life through the development of new products and processes with greater efficacy, efficiency or reduced harmful side effects, and in contributing to our ability to understand and describe the world around us. Following a survey ofthe U.K.'s urgent need for a supercomputingfacility for aca­ demic research (see next chapter), a 256-processor T3D system from Cray Research Inc. went into operation at the University of Edinburgh in the summer of 1994. The High Performance Computing Initiative, HPCI, was established in November 1994 to support and ensure the efficient and effective exploitation of the T3D (and future gen­ erations of HPC systems) by a number of consortia working in the "frontier" areas of computational research. The Cray T3D, now comprising 512 processors and total of 32 CB memory, represented a very significant increase in computing power, allowing simulations to move forward on a number offronts. The three-fold aims of the HPCI may be summarised as follows; (1) to seek and maintain a world class position incomputational scienceand engineering, (2) to support and promote exploitation of HPC in industry, commerce and business, and (3) to support education and training in HPC and its application.


Diallylphthalat Phenoplaste Polycarbonat Potential Resol processor

Editors and affiliations

  • R. J. Allan
    • 1
  • M. F. Guest
    • 1
  • A. D. Simpson
    • 2
  • D. S. Henty
    • 2
  • D. A. Nicole
    • 3
  1. 1.HPCI CentreCLRC Daresbury LaboratoryDaresburyEngland
  2. 2.EPCCUniversity of EdinburghEdinburghScotland
  3. 3.HPCI CentreUniversity of SouthamptonSouthamptonEngland

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media New York 1999
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4613-7211-0
  • Online ISBN 978-1-4615-4873-7
  • Buy this book on publisher's site
Industry Sectors
Chemical Manufacturing