Integral Methods in Science and Engineering

Progress in Numerical and Analytic Techniques

  • Christian Constanda
  • Bardo E.J. Bodmann
  • Haroldo F. de Campos Velho

Table of contents

  1. Front Matter
    Pages i-xix
  2. L. Alvarez, R. S. Mohan, O. Shoham, L. Gomez, C. Avila
    Pages 1-14
  3. F. S. Azevedo, E. Sauter, M. Thompson, M. T. Vilhena
    Pages 15-39
  4. A. Barbarino, S. Dulla, P. Ravetto
    Pages 41-56
  5. B. E. J. Bodmann, M. T. Vilhena, J. R. S. Zabadal, L. P. Luna de Oliveira, A. Schuck
    Pages 57-64
  6. B. E. J. Bodmann, J. R. S. Zabadal, A. Schuck, M. T. Vilhena, R. Quadros
    Pages 65-74
  7. V. Calvez, N. Meunier, N. Muller, R. Voituriez
    Pages 75-89
  8. D. Q. de Camargo, B. E. J. Bodmann, M. T. Vilhena, C. F. Segatto
    Pages 91-104
  9. B. D. Ganapol
    Pages 115-136
  10. I. Gioveli, A. J. Strieder, B. E. J. Bodmann, M. T. Vilhena, A. S. Athayde
    Pages 137-154
  11. M. Schramm, C. Z. Petersen, M. T. Vilhena, B. E. J. Bodmann, A. C. M. Alvim
    Pages 229-243
  12. J. J. A. Silva, B. E. J. Bodmann, M. T. Vilhena, A. C. M. Alvim
    Pages 245-257
  13. F. F. Lamego Simões Filho, A. S. de Aguiar, A. D. Soares, C. M. F. Lapa, M. A. V. Wasserman
    Pages 259-277
  14. G. R. Thomson, C. Constanda, D. R. Doty
    Pages 311-328
  15. F. K. Tomaschewski, C. F. Segatto, M. T. Vilhena
    Pages 329-339
  16. Back Matter
    Pages 399-401

About this book


​​Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering.


The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.  The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide.


Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.​


conservation laws deformable structures fluid dynamics integral equations integral methods numerical methods

Editors and affiliations

  • Christian Constanda
    • 1
  • Bardo E.J. Bodmann
    • 2
  • Haroldo F. de Campos Velho
    • 3
  1. 1.Department of MathematicsThe University of TulsaTulsaUSA
  2. 2.Mechanical EngineeringFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.LACNational Institute for Space ResearchSao Jose dos CamposBrazil

Bibliographic information