Skip to main content

Subtilisin Enzymes

Practical Protein Engineering

  • Book
  • © 1996

Overview

Part of the book series: Advances in Experimental Medicine and Biology (AEMB, volume 379)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (29 chapters)

  1. Biophysical Probes and Mutagenesis

  2. Protein Engineering od Subtilisin Enzymes

Keywords

About this book

Subtilisin is the most extensively studied model system for protein engineering. The primary motivating factor for the interest in subtilisin is the commercial utility of this class of proteases. The subtilisin symposium was the first international meeting to bring together a large number of groups that have focused on the subtilisins and the subtilases-the protein superfamily of subtilisin-like enzymes. The results presented at the symposium are in this way a unique compendium of a broad spectrum of work largely focused on harnessing the potential of site-directed mutagenesis to understand and deliberately alter the function of these enzymes toward a desired end. This sort of protein engineering has been extremely successful in subtilisin, with many such "engineered" enzymes now widely used in commer­ cial enterprises. In this regard the experience derived from subtilisin does represent practical protein engineering. It is becoming clear that subtilisin represents a larger class of enzymes, the subtilases, that include many of the human pro hormone-converting enzymes. As international collabo­ rative efforts to sequence entire genomes continue, we can reasonably expect that additional members of the subtilase class will be encountered. Whenever interest in a member of this class of enzyme arises, the work on subtilisin will serve as a guide to the analysis for what in bacillus, fungi, and industry is an everyday workhorse enzyme.

Editors and Affiliations

  • Genecor International, Inc., South San Francisco, USA

    Richard Bott

  • European Molecular Biology Laboratory, Hamburg, Germany

    Christian Betzel

Bibliographic Information

Publish with us