A Course on Integral Equations

  • Allen C. Pipkin

Part of the Texts in Applied Mathematics book series (TAM, volume 9)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Allen C. Pipkin
    Pages 1-27
  3. Allen C. Pipkin
    Pages 28-43
  4. Allen C. Pipkin
    Pages 44-71
  5. Allen C. Pipkin
    Pages 72-91
  6. Allen C. Pipkin
    Pages 92-106
  7. Allen C. Pipkin
    Pages 107-136
  8. Allen C. Pipkin
    Pages 137-159
  9. Allen C. Pipkin
    Pages 160-172
  10. Allen C. Pipkin
    Pages 173-202
  11. Back Matter
    Pages 257-268

About this book


Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas­ sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe­ matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back­ ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem­ solving rather than theorem-proving, the main requirement is that the stu­ dent should be willing to work out a large number of specific examples.


Integral equation Integralgleichung Mathematica analytic function boundary element method equation function functions integral problem solving proving requirement theorem theorem proving variable

Authors and affiliations

  • Allen C. Pipkin
    • 1
  1. 1.Center of Fluid Mechanics, Turbulence and ComputationBrown UniversityProvidenceUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag New York 1991
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-8773-5
  • Online ISBN 978-1-4612-4446-2
  • Series Print ISSN 0939-2475
  • Series Online ISSN 2196-9949
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking
IT & Software