Advertisement

Classical Descriptive Set Theory

  • Alexander S. Kechris

Part of the Graduate Texts in Mathematics book series (GTM, volume 156)

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Polish Spaces

    1. Alexander S. Kechris
      Pages 1-4
    2. Alexander S. Kechris
      Pages 5-12
    3. Alexander S. Kechris
      Pages 13-17
    4. Alexander S. Kechris
      Pages 18-28
    5. Alexander S. Kechris
      Pages 29-30
    6. Alexander S. Kechris
      Pages 31-34
    7. Alexander S. Kechris
      Pages 35-40
    8. Alexander S. Kechris
      Pages 41-57
    9. Alexander S. Kechris
      Pages 58-64
  3. Borel Sets

    1. Alexander S. Kechris
      Pages 65-67
    2. Alexander S. Kechris
      Pages 68-72
    3. Alexander S. Kechris
      Pages 73-81
    4. Alexander S. Kechris
      Pages 82-84
    5. Alexander S. Kechris
      Pages 85-88
    6. Alexander S. Kechris
      Pages 89-93
    7. Alexander S. Kechris
      Pages 94-102
    8. Alexander S. Kechris
      Pages 103-119
    9. Alexander S. Kechris
      Pages 120-128
    10. Alexander S. Kechris
      Pages 129-136
    11. Alexander S. Kechris
      Pages 137-148
    12. Alexander S. Kechris
      Pages 149-166
    13. Alexander S. Kechris
      Pages 167-178
    14. Alexander S. Kechris
      Pages 179-189
    15. Alexander S. Kechris
      Pages 190-195
  4. Analytic Sets

    1. Alexander S. Kechris
      Pages 196-204
    2. Alexander S. Kechris
      Pages 205-208
    3. Alexander S. Kechris
      Pages 209-216
    4. Alexander S. Kechris
      Pages 217-225
    5. Alexander S. Kechris
      Pages 226-233
    6. Alexander S. Kechris
      Pages 234-238
    7. Alexander S. Kechris
      Pages 239-241
  5. Co- Analytic Sets

    1. Alexander S. Kechris
      Pages 242-244
    2. Alexander S. Kechris
      Pages 245-266
    3. Alexander S. Kechris
      Pages 267-280
    4. Alexander S. Kechris
      Pages 281-298
    5. Alexander S. Kechris
      Pages 299-312
  6. Projective Sets

    1. Alexander S. Kechris
      Pages 313-321
    2. Alexander S. Kechris
      Pages 322-326
    3. Alexander S. Kechris
      Pages 327-345
    4. Alexander S. Kechris
      Pages 346-347
  7. Back Matter
    Pages 349-404

About this book

Introduction

Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory.
This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation.

Keywords

Baire space Compact space Homeomorphism addition cardinals forcing meager set metrizable model theory set set theory

Authors and affiliations

  • Alexander S. Kechris
    • 1
  1. 1.Alfred P. Sloan Laboratory of Mathematics and Physics Mathematics 253-37California Institute of TechnologyPasadenaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4612-4190-4
  • Copyright Information Springer-Verlag New York 1995
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-8692-9
  • Online ISBN 978-1-4612-4190-4
  • Series Print ISSN 0072-5285
  • Buy this book on publisher's site
Industry Sectors
Telecommunications
Oil, Gas & Geosciences