Advertisement

Progress in Approximation Theory

An International Perspective

  • A. A. Gonchar
  • E. B. Saff

Part of the Springer Series in Computational Mathematics book series (SSCM, volume 19)

Table of contents

  1. Front Matter
    Pages i-xviii
  2. N. M. Atakishiyev, S. K. Suslov
    Pages 1-35
  3. Mourad E. H. Ismail, Ron Perline, Jet Wimp
    Pages 37-50
  4. A. L. Levin, E. B. Saff
    Pages 105-126
  5. A. I. Aptekarev, Herbert Stahl
    Pages 127-167
  6. A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin
    Pages 169-190
  7. Ronald A. DeVore, Pencho Petrushev, Xiang Ming Yu
    Pages 261-283
  8. T. S. Norfolk, A. Ruttan, R. S. Varga
    Pages 403-418
  9. Peter Borwein, E. B. Saff
    Pages 419-429
  10. M. v. Golitschek, G. G. Lorentz, Y. Makovoz
    Pages 431-451

About these proceedings

Introduction

Designed to give a contemporary international survey of research activities in approximation theory and special functions, this book brings together the work of approximation theorists from North America, Western Europe, Asia, Russia, the Ukraine, and several other former Soviet countries. Contents include: results dealing with q-hypergeometric functions, differencehypergeometric functions and basic hypergeometric series with Schur function argument; the theory of orthogonal polynomials and expansions, including generalizations of Szegö type asymptotics and connections with Jacobi matrices; the convergence theory for Padé and Hermite-Padé approximants, with emphasis on techniques from potential theory; material on wavelets and fractals and their relationship to invariant measures and nonlinear approximation; generalizations of de Brange's in equality for univalent functions in a quasi-orthogonal Hilbert space setting; applications of results concerning approximation by entire functions and the problem of analytic continuation; and other topics.

Keywords

Approximation Schur polynomial Slate approximation theory boundary element method equality form fractal function integral online potential theory techniques theorem wavelet

Editors and affiliations

  • A. A. Gonchar
    • 1
  • E. B. Saff
    • 2
  1. 1.Steklov Mathematics InstituteMoscow GSP-1Russia
  2. 2.Institute for Constructive MathematicsUniversity of South FloridaTampaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4612-2966-7
  • Copyright Information Springer-Verlag New York 1992
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-7737-8
  • Online ISBN 978-1-4612-2966-7
  • Series Print ISSN 0179-3632
  • Buy this book on publisher's site
Industry Sectors
Aerospace
Oil, Gas & Geosciences
Engineering