Advertisement

Mathematics: A Concise History and Philosophy

  • W. S. Anglin

Part of the Undergraduate Texts in Mathematics book series (UTM)

Table of contents

  1. Front Matter
    Pages i-xi
  2. W. S. Anglin
    Pages 1-6
  3. W. S. Anglin
    Pages 7-11
  4. W. S. Anglin
    Pages 13-16
  5. W. S. Anglin
    Pages 17-21
  6. W. S. Anglin
    Pages 23-27
  7. W. S. Anglin
    Pages 29-34
  8. W. S. Anglin
    Pages 35-41
  9. W. S. Anglin
    Pages 43-47
  10. W. S. Anglin
    Pages 49-55
  11. W. S. Anglin
    Pages 57-60
  12. W. S. Anglin
    Pages 61-67
  13. W. S. Anglin
    Pages 69-73
  14. W. S. Anglin
    Pages 75-80
  15. W. S. Anglin
    Pages 81-86
  16. W. S. Anglin
    Pages 87-94
  17. W. S. Anglin
    Pages 95-104
  18. W. S. Anglin
    Pages 105-111
  19. W. S. Anglin
    Pages 113-117
  20. W. S. Anglin
    Pages 119-121
  21. W. S. Anglin
    Pages 123-126
  22. W. S. Anglin
    Pages 127-129
  23. W. S. Anglin
    Pages 131-136
  24. W. S. Anglin
    Pages 137-139
  25. W. S. Anglin
    Pages 141-146
  26. W. S. Anglin
    Pages 147-152
  27. W. S. Anglin
    Pages 153-155
  28. W. S. Anglin
    Pages 157-160
  29. W. S. Anglin
    Pages 161-166
  30. W. S. Anglin
    Pages 167-173
  31. W. S. Anglin
    Pages 175-179
  32. W. S. Anglin
    Pages 181-184
  33. W. S. Anglin
    Pages 185-190
  34. W. S. Anglin
    Pages 191-194
  35. W. S. Anglin
    Pages 195-197
  36. W. S. Anglin
    Pages 199-201
  37. W. S. Anglin
    Pages 203-207
  38. W. S. Anglin
    Pages 209-212
  39. W. S. Anglin
    Pages 213-216
  40. W. S. Anglin
    Pages 217-220
  41. W. S. Anglin
    Pages 221-225
  42. Back Matter
    Pages 227-265

About this book

Introduction

This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat­ ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac­ quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu­ dents are given a choice between mathematical assignments, and more his­ torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe­ maticians, giving more mathematically talented students a greater oppor­ tunity to learn the history and philosophy by way of problem solving.

Keywords

Algebra Cantor Finite Gottfried Wilhelm Leibniz Middle Ages Plato Problem-solving calculus eighteenth century geometry mathematics philosophy of mathematics science seventeenth century

Authors and affiliations

  • W. S. Anglin
    • 1
  1. 1.Keane Inc.DarienUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4612-0875-4
  • Copyright Information Springer-Verlag New York, Inc. 1994
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-6930-4
  • Online ISBN 978-1-4612-0875-4
  • Series Print ISSN 0172-6056
  • Buy this book on publisher's site