© 1999
Fundamentals of Differential Geometry
- 286 Citations
- 110k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 191)
Advertisement
© 1999
Part of the Graduate Texts in Mathematics book series (GTM, volume 191)
"There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books. ...
It can be warmly recommended to a wide audience."
EMS Newsletter, Issue 41, September 2001
"The text provides a valuable introduction to basic concepts and fundamental results in differential geometry. A special feature of the book is that it deals with infinite-dimensional manifolds, modeled on a Banach space in general, and a Hilbert space for Riemannian geometry. The set-up works well on basic theorems such as the existence, uniqueness and smoothness theorem for differential equations and the flow of a vector field, existence of tubular neighborhoods for a submanifold, and the Cartan-Hadamard theorem. A major exception is the Hopf-Rinow theorem. Curvature and basic comparison theorems are discussed. In the finite-dimensional case, volume forms, the Hodge star operator, and integration of differential forms are expounded. The book ends with the Stokes theorem and some of its applications."-- MATHEMATICAL REVIEWS