© 2013

Efficient Algorithms for Discrete Wavelet Transform

With Applications to Denoising and Fuzzy Inference Systems


  • Describes a mathematical model to predict the errors introduced in the implementation of the discrete wavelet transform (DWT) on fixed-point processors

  • Explores the application of DWT on benchmark signals and images in terms of denoising

  • Proposes a modified threshold selection and thresholding scheme


Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Table of contents

  1. Front Matter
    Pages i-ix
  2. K. K. Shukla, Arvind K. Tiwari
    Pages 1-20
  3. K. K. Shukla, Arvind K. Tiwari
    Pages 21-36
  4. K. K. Shukla, Arvind K. Tiwari
    Pages 37-49
  5. K. K. Shukla, Arvind K. Tiwari
    Pages 51-59
  6. K. K. Shukla, Arvind K. Tiwari
    Pages 61-81
  7. K. K. Shukla, Arvind K. Tiwari
    Pages 83-84
  8. Back Matter
    Pages 85-91

About this book


Transforms are an important part of an engineer’s toolkit for solving signal processing and polynomial computation problems. In contrast to the Fourier transform-based approaches where a fixed window is used uniformly for a range of frequencies, the wavelet transform uses short windows at high frequencies and long windows at low frequencies. This way, the characteristics of non-stationary disturbances can be more closely monitored. In other words, both time and frequency information can be obtained by wavelet transform. Instead of transforming a pure time description into a pure frequency description, the wavelet transform finds a good promise in a time-frequency description.

Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in digital signal processing (speech and image processing), communication, computer science and mathematics. Wavelet transforms are known to have excellent energy compaction characteristics and are able to provide perfect reconstruction. Therefore, they are ideal for signal/image processing. The shifting (or translation) and scaling (or dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation.

The nature of wavelet computation forces us to carefully examine the implementation methodologies. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients.

This work presents new implementation techniques of DWT, that are efficient in terms of computation requirement, storage requirement, and with better signal-to-noise ratio in the reconstructed signal.


Discrete Wavelet Transform Efficient Algorithms Error Analysis Fuzzy Expert Systems Image Processing Noise Cancellation Parallel Programming Parallel Virtual Machine Signal Processing

Authors and affiliations

  1. 1.Banaras Hindu UniversityIndian Institute of TechnologyVaranasiIndia
  2. 2.GE India Technology CenterBangaloreIndia

Bibliographic information

Industry Sectors
Chemical Manufacturing
Health & Hospitals
IT & Software
Consumer Packaged Goods
Materials & Steel
Energy, Utilities & Environment
Oil, Gas & Geosciences