Advertisement

Basic Linear Algebra

  • T. S. Blyth
  • E. F. Robertson

Part of the Springer Undergraduate Mathematics Series book series (SUMS)

Table of contents

  1. Front Matter
    Pages i-xi
  2. T. S. Blyth, E. F. Robertson
    Pages 1-16
  3. T. S. Blyth, E. F. Robertson
    Pages 17-26
  4. T. S. Blyth, E. F. Robertson
    Pages 27-58
  5. T. S. Blyth, E. F. Robertson
    Pages 59-68
  6. T. S. Blyth, E. F. Robertson
    Pages 69-94
  7. T. S. Blyth, E. F. Robertson
    Pages 95-112
  8. T. S. Blyth, E. F. Robertson
    Pages 113-128
  9. T. S. Blyth, E. F. Robertson
    Pages 129-152
  10. T. S. Blyth, E. F. Robertson
    Pages 153-174
  11. T. S. Blyth, E. F. Robertson
    Pages 175-182
  12. T. S. Blyth, E. F. Robertson
    Pages 183-204
  13. T. S. Blyth, E. F. Robertson
    Pages 205-230
  14. Back Matter
    Pages 231-232

About this book

Introduction

Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers: this will take the form of a tutorial on the use of the "LinearAlgebra" package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book.

Keywords

Algebra Non-linear algebra adopted-textbook NY algebra Eigenvalue Eigenvector linear algebra matrices matrix polynomial

Authors and affiliations

  • T. S. Blyth
    • 1
  • E. F. Robertson
    • 1
  1. 1.School of Mathematical SciencesUniversity of St Andrews, North HaughSt Andrews, FifeScotland

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4471-0681-4
  • Copyright Information Springer-Verlag London 2002
  • Publisher Name Springer, London
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-85233-662-2
  • Online ISBN 978-1-4471-0681-4
  • Series Print ISSN 1615-2085
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking
Telecommunications