Fields, Flows and Waves

An Introduction to Continuum Models

  • David F. Parker

Part of the Springer Undergraduate Mathematics Series book series (SUMS)

Table of contents

  1. Front Matter
    Pages i-xii
  2. David F. Parker
    Pages 1-15
  3. David F. Parker
    Pages 17-34
  4. David F. Parker
    Pages 35-53
  5. David F. Parker
    Pages 55-76
  6. David F. Parker
    Pages 77-99
  7. David F. Parker
    Pages 101-131
  8. David F. Parker
    Pages 133-156
  9. David F. Parker
    Pages 157-183
  10. David F. Parker
    Pages 185-206
  11. David F. Parker
    Pages 207-235
  12. Back Matter
    Pages 237-270

About this book


Many phenomena in the physical and biological sciences involve the collective behaviour of (very large) numbers of individual objects. For example, the be­ haviour of gases ultimately concerns the interacting motions of uncountably many atoms and molecules, but to understand flow in nozzles, around aircraft and in meteorology it is best to treat velocity and density as continuous func­ tions of position and time and then to analyse the associated flows. Although modern electronics involves ever smaller components, even the semiconduc­ tor devices used widely in electronic communications and in digital processing involve collective phenomena, such as electric currents and fields, which are continuously varying functions of position and time. Diffusion and reaction between various chemical constituents, the growth and spread of biological or­ ganisms and the flow of traffic on major highways are all phenomena which may be described and analysed in terms of fields and flows, while sound, light and various other electromagnetic phenomena involve both fields and waves. Treating these using a continuum model, which does not attempt to trace the motion and evolution of individual objects, often gives good predictions. The mathematical concepts and techniques which underlie such treatments are the subject of this book. This book is designed as a first introduction to the use of mathematical techniques, within continuum theories.


Applied mathematics Boundary value problem Potential continuum mechanics continuum models electromagnetic wave mathematical physics wave equation

Authors and affiliations

  • David F. Parker
    • 1
  1. 1.School of MathematicsUniversity of EdinburghEdinburghUK

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag London Limited 2003
  • Publisher Name Springer, London
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-85233-708-7
  • Online ISBN 978-1-4471-0019-5
  • Series Print ISSN 1615-2085
  • Buy this book on publisher's site
Industry Sectors
Chemical Manufacturing
Finance, Business & Banking
IT & Software