© 2004

Dispersive Transport Equations and Multiscale Models

  • Naoufel Ben Abdallah
  • Anton Arnold
  • Pierre Degond
  • Irene M. Gamba
  • Robert T. Glassey
  • C. David Levermore
  • Christian Ringhofer
Conference proceedings

Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 136)

Table of contents

  1. Front Matter
    Pages i-x
  2. Claude Bardos, François Golse, Alex Gottlieb, Norbert J. Mauser
    Pages 1-23
  3. Leonard J. Borucki
    Pages 25-35
  4. François Bouchut, François Golse, Christophe Pallard
    Pages 37-50
  5. Timothy S. Cale, Max O. Bloomfield, David F. Richards, Sofiane Soukane, Kenneth E. Jansent, John A. Tichy et al.
    Pages 51-76
  6. Ansgar Jüngel
    Pages 151-166
  7. Clotilde Fermanian Kammerer, Patrick Gerard
    Pages 167-177
  8. Markos A. Katsoulakis, Dionisios G. Vlachos
    Pages 179-198
  9. Peter L. O’Sullivan, Frieder H. Baumann, George H. Gilmer, Jacques Dalla Torre, Chan-Soo Shin, Ivan Petrov et al.
    Pages 219-236
  10. Walter A. Strauss
    Pages 281-286
  11. Back Matter
    Pages 287-295

About these proceedings


IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wdie range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.


Cauchy problem bifurcation modeling plasma semiconductor semiconductor device simulation stability wave

Editors and affiliations

  • Naoufel Ben Abdallah
    • 1
  • Anton Arnold
    • 2
  • Pierre Degond
    • 1
  • Irene M. Gamba
    • 3
  • Robert T. Glassey
    • 4
  • C. David Levermore
    • 5
  • Christian Ringhofer
    • 6
  1. 1.Laboratoire MIPUniversité Paul SabatierToulouse Cedex 4France
  2. 2.Angewandte MathematikUniversität des SaarlandesSaarbruckenGermany
  3. 3.Department of MathematicsUniversity of Texas at AustinAustinUSA
  4. 4.Department of MathematicsIndiana UniversityBloomingtonUSA
  5. 5.CSCAMMUniversity of MarylandCollege ParkUSA
  6. 6.Department of MathematicsArizona State UniversityTempeUSA

Bibliographic information