Advertisement

© 2007

Data Mining in Biomedicine

  • Panos M. Pardalos
  • Vladimir L. Boginski
  • Alkis Vazacopoulos

Benefits

  • Demonstrates how new data mining methodologies are successfully applied in real-life biomedical practice, which makes it attractive to both researchers and practitioners

Book

Part of the Springer Optimization and Its Applications book series (SOIA, volume 7)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Recent Methodological Developments for Data Mining Problems in Biomedicine

    1. Front Matter
      Pages 1-1
    2. Sorin Alexe, Peter L. Hammer
      Pages 3-23
    3. Stanislav Busygin, Panos M. Pardalos
      Pages 25-37
    4. Dechang Chen, Zhe Zhang, Zhenqiu Liu, Xiuzhen Cheng
      Pages 39-46
    5. Zhenqiu Liu, Dechang Chen, Xue-wen Chen
      Pages 47-57
    6. Mukund Deshpande, Michihiro Kuramochi, George Karypis
      Pages 59-90
    7. Pando Georgiev, Fabian Theis, Andrzej Cichocki, Hovagim Bakardjian
      Pages 91-116
    8. Anthony Okafor, Panos Pardalos, Michelle Ragle
      Pages 117-131
    9. Weili Wu, Yingshu Li, Chih-hao Huang, Ding-Zhu Du
      Pages 133-139
    10. Hyunki Kim, Su-Shing Chen
      Pages 177-189
  3. Data Mining Techniques in Disease Diagnosis

    1. Front Matter
      Pages 191-191
    2. M. W. Brauner, N. Brauner, P. L. Hammer, I. Lozina, D. Valeyre
      Pages 193-208
    3. Giacomo Patrizi, Gabriella Addonisio, Costas Giannakakis, Andrea Onetti Muda, Gregorio Patrizi, Tullio Faraggiana
      Pages 209-230
    4. Giacomo Patrizi, Gregorio Patrizi, Luigi Di Cioccio, Claudia Bauco
      Pages 231-258
  4. Data Mining Studies in Genomics and Proteomics

    1. Front Matter
      Pages 259-259
    2. Budi Santosa, Tyrrell Conway, Theodore Trafalis
      Pages 261-274
    3. Cláudio N. Meneses, Carlos A. S. Oliveira, Panos M. Pardalos
      Pages 275-290

About this book

Keywords

Biomedicine Clustering STATISTICA algorithms bioinformatics classification computed tomography (CT) data analysis data mining dynamics linear optimization optimization statistics

Editors and affiliations

  • Panos M. Pardalos
    • 1
  • Vladimir L. Boginski
    • 2
  • Alkis Vazacopoulos
    • 3
  1. 1.University of FloridaGainesville
  2. 2.Florida State UniversityTallahassee
  3. 3.Dash OptimizationEnglewood Cliffs

Bibliographic information

Industry Sectors
Biomedicine
Pharma
Health & Hospitals
Biotechnology
Consumer Packaged Goods

Reviews

From the reviews:

"This book is an in-depth look at ‘the development of appropriate methods for extracting useful information’ from data in biomedicine. … is aimed at scientists and practitioners in the fields of biomedicine, engineering, mathematics, and computer science as well as graduate students and is appropriate for a variety of readers. … A well compiled volume on the application of data mining to biomedicine, this book will be a welcome addition to the literature." (Nicole Mitchell, Doody’s Review Service, August, 2008)