Advertisement

The Theory of Chaotic Attractors

  • Brian R. Hunt
  • Tien-Yien Li
  • Judy A. Kennedy
  • Helena E. Nusse

Table of contents

  1. Front Matter
    Pages i-x
  2. Brian R. Hunt, Tien-Yien Li, Judy A. Kennedy, Helena E. Nusse
    Pages 1-24
  3. Edward N. Lorenz
    Pages 25-36
  4. K. Krzyżewski, W. Szlenk
    Pages 37-46
  5. Rufus Bowen, David Ruelle
    Pages 55-76
  6. Tien-Yien Li, James A. Yorke
    Pages 77-84
  7. J. Doyne Farmer, Edward Ott, James A. Yorke
    Pages 142-169
  8. Peter Grassberger, Itamar Procaccia
    Pages 170-189
  9. P. Collet, Y. Levy
    Pages 222-242
  10. John Milnor
    Pages 243-264
  11. J.-P. Eckmann, D. Ruelle
    Pages 273-312
  12. Marek Ryszard Rychlik
    Pages 313-334
  13. Celso Grebogi, Edward Ott, James A. Yorke
    Pages 335-348
  14. Michael Benedicks, Lai-Sang Young
    Pages 364-399
  15. Michael Dellnitz, Oliver Junge
    Pages 400-424
  16. José F. Alves, Christian Bonatti, Marcelo Viana
    Pages 443-490
  17. Brian R. Hunt, Judy A. Kennedy, Tien-Yien Li, Helena E. Nusse
    Pages 491-512
  18. Back Matter
    Pages 513-514

About this book

Introduction

 

The development of the theory of chaotic dynamics and its subsequent wide applicability in science and technology has been an extremely important achievement of modern mathematics. This volume collects several of the most influential papers in chaos theory from the past 40 years, starting with Lorenz's seminal 1963 article and containing classic papers by Lasota and Yorke (1973), Bowen and Ruelle (1975), Li and Yorke (1975), May (1976), Henon (1976), Milnor (1985), Eckmann and Ruelle (1985), Grebogi, Ott, and Yorke (1988), Benedicks and Young (1993) and many others, with an emphasis on invariant measures for chaotic systems.

Dedicated to Professor James Yorke, a pioneer in the field and a recipient of the 2003 Japan Prize, the book includes an extensive, anecdotal introduction discussing Yorke's contributions and giving readers a general overview of the key developments of the theory from a historical perspective.

Keywords

Mathematica dynamical systems ergodic theory fractal

Editors and affiliations

  • Brian R. Hunt
    • 1
  • Tien-Yien Li
    • 2
  • Judy A. Kennedy
    • 3
  • Helena E. Nusse
    • 4
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA
  3. 3.Department of MathematicsUniversity of DelawareNewarkUSA
  4. 4.Department of EconometricsUniversity of GroningenGroningenThe Netherlands

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-387-21830-4
  • Copyright Information Springer Science+Business Media New York 2004
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4419-2330-1
  • Online ISBN 978-0-387-21830-4
  • Buy this book on publisher's site
Industry Sectors
Finance, Business & Banking
Energy, Utilities & Environment