Advertisement

Quantized Vortex Dynamics and Superfluid Turbulence

  • C. F. Barenghi
  • R. J. Donnelly
  • W. F. Vinen

Part of the Lecture Notes in Physics book series (LNP, volume 571)

Table of contents

  1. Front Matter
    Pages I-XVIII
  2. Introduction

  3. Turbulence Experiments

    1. Éric Varoquaux, Olivier Avenel, Yury Mukharsky, Pertti Hakonen
      Pages 36-50
    2. Yeon Suk Choi, Michael R. Smith, Steven W. Van Sciver
      Pages 66-72
    3. S. I. Davis, P. C. Hendry, P. V. E. McClintock, H. Nichol
      Pages 73-79
    4. J.J. Niemela, L. Skrbek, S.R. Stalp
      Pages 80-86
  4. Vortex Dynamics

  5. Turbulence Theory

    1. Olusola C. Idowu, Demosthenes Kivotides, Carlo F. Barenghi, David C. Samuels
      Pages 162-176
    2. Tomasz Lipniacki
      Pages 177-183
    3. Simon P. Godfrey, David C. Samuels, Carlo F. Barenghi
      Pages 184-190
    4. Makoto Tsubota, Tsunehiko Araki, Sergey K. Nemirovskii
      Pages 198-204
    5. Sergey K. Nemirovskii, Mikhail V. Nedoboiko
      Pages 205-211
    6. Sergey K. Nemirovskii, L.P. Kondaurova, M. Tsubota
      Pages 212-218
    7. S.K. Nemirovskii, A.Ja. Baltsevich
      Pages 219-225
  6. The NLSE and Superfluidity

    1. Paul H. Roberts, Natalia G. Berloff
      Pages 235-257
    2. Natalia G. Berloff, Paul H. Roberts
      Pages 268-275
    3. Sergey Nazarenko, Yuri Lvov, Robert West
      Pages 283-289
    4. Cristián Huepe, Caroline Nore, Marc-Etienne Brachet
      Pages 297-304
  7. Bose-Einstein Condensation

    1. C.S. Adams, B. Jackson, M. Leadbeater, J.F. McCann, T. Winiecki
      Pages 307-319
    2. Alexander L. Fetter, Anatoly A. Svidzinsky
      Pages 320-326
    3. H. P. Büchler, V. B. Geshkenbein, G. Blatter
      Pages 334-341
  8. Vortex Reconnections and Classical Aspects

    1. Axel Brandenburg, Robert M. Kerr
      Pages 358-365
    2. Arkady Tsinober
      Pages 389-395
  9. Helium 3 and Other Systems

  10. Back Matter
    Pages 453-455

About this book

Introduction

This book is primarily concerned with turbulence in superfluid helium. Quantized vorticity has traditionally generated great interest among physicists but there are now also important engineering applications, such as liquid helium cooling of superconducting magnets. Presently much research is done on the relationship between superfluid turbulence and classical turbulence, as intense turbulence can be generated in liquid helium due to its small kinematic viscosity. There is also a close relationship between superfluid behaviour and quantized vorticity in liquid helium and in atomic Bose--Einstein condensates. Putting special emphasis on the interplay between the different disciplines involved, this readable account of recent research will appeal not only to established researchers but also to newcomers and graduate students wishing to enter the field.

Keywords

Dissipation Phase Potential metastable nonlinear dynamics quantum vortex rotating fluids superconductivity superfluidity turbulence

Editors and affiliations

  • C. F. Barenghi
    • 1
  • R. J. Donnelly
    • 2
  • W. F. Vinen
    • 3
  1. 1.Mathematics DepartmentUniversity of NewcastleNewcastleUK
  2. 2.Physics DepartmentUniversity of OregonEugeneUSA
  3. 3.Physics DepartmentUniversity of BirminghamBirminghamUK

Bibliographic information

  • DOI https://doi.org/10.1007/3-540-45542-6
  • Copyright Information Springer-Verlag Berlin Heidelberg 2001
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-42226-6
  • Online ISBN 978-3-540-45542-4
  • Series Print ISSN 0075-8450
  • Buy this book on publisher's site