Advertisement

Mathematical Implications of Einstein-Weyl Causality

  • Hans-Jürgen Borchers
  • Rathindra Nath Sen

Part of the Lecture Notes in Physics book series (LNP, volume 709)

Table of contents

  1. Front Matter
    Pages I-XII
  2. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 1-6
  3. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 7-14
  4. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 15-30
  5. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 31-50
  6. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 51-65
  7. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 67-94
  8. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 95-101
  9. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 103-127
  10. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 129-135
  11. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 137-146
  12. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 147-156
  13. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 191-191
  14. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 191-191
  15. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 191-192
  16. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 192-192
  17. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 192-192
  18. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 192-192
  19. Hans-Jürgen Borchers, Rathindra Nath Sen
    Pages 192-192
  20. Back Matter
    Pages 157-190

About this book

Introduction

The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics.

Keywords

causality differentiable manifolds manifold mathematical physics relativity topological spaces

Authors and affiliations

  • Hans-Jürgen Borchers
    • 1
  • Rathindra Nath Sen
    • 2
  1. 1.Faculty of Physics Institute of Theoretical PhysicsGeorg-August University, GöttingenGöttingenGermany
  2. 2.Faculty of Natural Sciences Department of MathematicsBen-Gurion University of the NegevBeer ShevaIsrael

Bibliographic information

  • DOI https://doi.org/10.1007/3-540-37681-X
  • Copyright Information Springer-Verlag Berlin Heidelberg 2006
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Physics and Astronomy
  • Print ISBN 978-3-540-37680-4
  • Online ISBN 978-3-540-37681-1
  • Series Print ISSN 0075-8450
  • Series Online ISSN 1616-6361
  • Buy this book on publisher's site
Industry Sectors
IT & Software
Energy, Utilities & Environment