Global Aspects of Complex Geometry

  • Fabrizio Catanese
  • Hélène Esnault
  • Alan T. Huckleberry
  • Klaus Hulek
  • Thomas Peternell

Table of contents

  1. Front Matter
    Pages I-VIII
  2. Ingrid C. Bauer, Fabrizio Catanese, Roberto Pignatelli
    Pages 1-58
  3. Manuel Blickle, Hélène Esnault, Kay Rülling
    Pages 59-82
  4. Lesya Bodnarchuk, Igor Burban, Yuriy Drozd, Gert-Martin Greuel
    Pages 83-128
  5. W. Ebeling, S. M. Gusein-Zade
    Pages 129-169
  6. Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin
    Pages 171-209
  7. Peter Heinzner, Henrik Stötzel
    Pages 211-226
  8. Alan Huckleberry
    Pages 227-270
  9. Klaus Hulek, Remke Kloosterman, Matthias Schütt
    Pages 271-309
  10. Priska Jahnke, Thomas Peternell, Ivo Radloff
    Pages 311-357
  11. Stefan J. Müller-Stach
    Pages 451-469
  12. Back Matter
    Pages 499-506

About this book


This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry.

Written by established experts this book is a must for mathematicians working in Complex Geometry.


Characteristic p-geometry Complex Geometry Hodge Theory Kähler Geometry Moduli Spaces Varieties in higher Diemsions algebraic varieties

Editors and affiliations

  • Fabrizio Catanese
    • 1
  • Hélène Esnault
    • 2
  • Alan T. Huckleberry
    • 3
  • Klaus Hulek
    • 4
  • Thomas Peternell
    • 5
  1. 1.Lehrstuhl Mathematik VIII, Mathematisches InstitutUniversität BayreuthBayreuthGermany
  2. 2.MathematikUniversität Duisburg-EssenEssenGermany
  3. 3.Institut für MathematikUniversität BochumBochumGermany
  4. 4.FB Mathematik, Institut für MathematikUniversität HannoverHannoverGermany
  5. 5.Lehrstuhl Mathematik I, Mathematisches InstitutUniversität BayreuthBayreuthGermany

Bibliographic information