Architecture of Computing Systems - ARCS 2006

19th International Conference, Frankfurt/Main, Germany, March 13-16, 2006. Proceedings

  • Werner Grass
  • Bernhard Sick
  • Klaus Waldschmidt
Conference proceedings ARCS 2006

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3894)

Table of contents

  1. Front Matter
  2. Invited and Keynote Papers

    1. Vladimir Shestak, Howard Jay Siegel, Anthony A. Maciejewski, Shoukat Ali
      Pages 17-30
  3. Pervasive Computing

    1. Patrick de la Hamette, Gerhard Tröster
      Pages 31-41
    2. Thomas Wieland, Martin Fenne, Benjamin Stöcker
      Pages 56-68
    3. Sten Lundesgaard Amundsen, Frank Eliassen
      Pages 84-98
    4. David Bannach, Kai Kunze, Paul Lukowicz, Oliver Amft
      Pages 99-113
  4. Memory Systems

    1. Georgios Keramidas, Konstantinos Aisopos, Stefanos Kaxiras
      Pages 114-129
    2. Arul Sandeep Gade, Yul Chu
      Pages 130-144
    3. Haakon Dybdahl, Marius Grannæs, Lasse Natvig
      Pages 145-159
    4. Woo-Chan Park, Duk-Ki Yoon, Kil-Whan Lee, Il-San Kim, Kyung-Su Kim, Won-Jong Lee et al.
      Pages 160-175
  5. Architectures

    1. Hritam Dutta, Frank Hannig, Jürgen Teich
      Pages 176-190
    2. Dirk Koch, Thilo Streichert, Steffen Dittrich, Christian Strengert, Christian D. Haubelt, Jürgen Teich
      Pages 202-216
    3. Nagendra Bhargava Bharatula, Urs Anliker, Paul Lukowicz, Gerhard Tröster
      Pages 217-231
  6. Multiprocessing

    1. Chen-Yong Cher, Il Park, T. N. VijayKumar
      Pages 232-251
    2. Jörg-Christian Niemann, Christoph Puttmann, Mario Porrmann, Ulrich Rückert
      Pages 268-282
  7. Energy Efficient Design

    1. Mrinmoy Ghosh, Emre Özer, Stuart Biles, Hsien-Hsin S. Lee
      Pages 283-297
    2. Rabie Ben Atitallah, Smail Niar, Alain Greiner, Samy Meftali, Jean Luc Dekeyser
      Pages 298-310
    3. Sébastien Lafond, Johan Lilius
      Pages 311-325
  8. Power Awareness

    1. Arrvindh Shriraman, Nagarajan Venkateswaran, Niranjan Soundararajan
      Pages 326-340
    2. Miroslaw Dynia, Miroslaw Korzeniowski, Christian Schindelhauer
      Pages 341-351
  9. Network Protocols

    1. Pilar Manzanares-Lopez, Juan Carlos Sanchez-Aarnoutse, Josemaria Malgosa-Sanahuja, Joan Garcia-Haro
      Pages 367-381
    2. Esteban Egea-López, Javier Vales-Alonso, Alejandro S. Martínez-Sala, Joan García-Haro, Pablo Pavón-Mariño, M. Victoria Bueno-Delgado
      Pages 382-396
    3. Jae-Won Kim, Hye-Soo Kim, Jae-Woong Yun, Sung-Jea Ko
      Pages 397-406
  10. Security

    1. Jian Wang, Miodrag J. Mihaljevic, Lein Harn, Hideki Imai
      Pages 422-434
    2. Jörg Platte, Edwin Naroska, Kai Grundmann
      Pages 435-449
  11. Distributed Networks

    1. Sebastián Echeverría, Raúl Santelices, Miguel Nussbaum
      Pages 465-479
  12. Back Matter

About these proceedings


Technological progress is one of the driving forces behind the dramatic devel- mentofcomputersystemarchitecturesoverthe pastthreedecades.Eventhough it is quite clear that this development cannot only be measured by the ma- mum number of components on a chip, Moore’s Law may be and is often taken as a simple measure for the non-braked growth of computational power over the years. The more components are realizable on a chip, the more innovative and unconventional ideas can be realized by system architects. As a result, research in computer system architectures is more exciting than ever before. This book coversthe trends that shape the ?eld of computer system archit- tures.Thefundamenataltrade-o?inthedesignofcomputing systemsis between ?exibility, performance,powerconsumption, andchip area.The full exploitation of future silicon capacity requires new architecture approaches and new design paradigms such as multiple computers on a single chip, recon?gurable processor arrays, extensible processor architectures, and embedded memory technologies. For a successful use in practical applications, it is not enough to solve the ha- wareproblemsbutalsotodevelopplatformsthatprovidesoftwareinfrastructure and support e?ective programming. A quantum jump in complexity is achieved by embedded computing systems with an unprecedented level of connectivity linking together a growing n- ber of physical devices through networks. Embedded systems will become more and more pervasive as the component technologies become smaller, faster, and cheaper. Their complexity arises not only from the large number of components but also from a lack of determinism and a continual evolution of these systems.


Embedded Java Java Random Access Memory Scala ad-hoc networks computer architecture context-aware computing distributed systems embedded systems mobile computing operating system optimization organic computing pervasive computing virtual machine

Editors and affiliations

  • Werner Grass
    • 1
  • Bernhard Sick
    • 2
  • Klaus Waldschmidt
    • 3
  1. 1.University of PassauPassauGermany
  2. 2.Faculty of Computer Science and Mathematics – Institute of Computer ArchitecturesUniversity of PassauPassauGermany
  3. 3.University of Frankfurt/MainFrankfurtGermany

Bibliographic information

Industry Sectors
Materials & Steel
Finance, Business & Banking
IT & Software
Consumer Packaged Goods
Energy, Utilities & Environment
Oil, Gas & Geosciences