Increased Stability of Subsurface C Induced by Ca on the C-Incorporated Si(001)-4°-off Substrate

Abstract

The effects of Ca atoms adsorbed on the C-incorporated Si(001)-4°-off substrate have been investigated by using scanning tunneling microscopy (STM) and synchrotron photoemission spectroscopy (PES). The C atoms incorporated into the subsurface by C2H2 exposure and postannealing at 630 °C induce the c(4 × 4) structure and debunch the double-layer DB steps. The Ca atoms additionally adsorbed on this C-incorporated substrate induce terraces with a width twice that of the clean surface. Until postannealing up to 680 °C, no SiC trace is detected. The SiC islands start to be detected after postannealing at 780 °C, which is about 100 °C higher than that for the identical surface without Ca atoms. After the adsorbed Ca atoms are mostly desorbed by 880 °C postannealing, the SiC islands only remain on the surface. Such a result implies that the adsorbed Ca atoms act as a stabilizer to the subsurface C atoms and increase the onset temperature of SiC formation by 100 °C.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. A. Baski, S. C. Erwin and L. J. Whitman, Surf. Sci. 392, 69 (1997).

    ADS  Article  Google Scholar 

  2. [2]

    M. Yoshimura, H. Shibata, T. An and K. Ueda, Thin Solid Films 464-465, 28 (2004).

    ADS  Article  Google Scholar 

  3. [3]

    H. Minoda and K. Yagi, Phys. Rev. B 59, 2363 (1999).

    ADS  Article  Google Scholar 

  4. [4]

    H. Kim et al., Surf. Sci. 623, 64 (2014).

    ADS  Article  Google Scholar 

  5. [5]

    P. Sonnet and L. Stauffer, Prog. Surf. Sci. 81, 444 (2006).

    ADS  Article  Google Scholar 

  6. [6]

    R. Butz and H. Lüth, Surf. Sci. 411, 61 (1998).

    ADS  Article  Google Scholar 

  7. [7]

    G. W. Peng, Y. Y. Sun, A. C. H. Huan and Y. P. Feng, Phys. Rev. B 74, 115302 (2006).

    ADS  Article  Google Scholar 

  8. [8]

    J. W. Kim, T. U. Kampen, K. Horn and M-C. Jung, Surf. Sci. 601, 694 (2007).

    ADS  Article  Google Scholar 

  9. [9]

    C. A. Pignedoli et al., Phys. Rev. B 69, 113313 (2004).

    ADS  Article  Google Scholar 

  10. [10]

    V. De Renzi, R. Biagi and U. del Pennino, Phys. Rev. B 64, 155305 (2001).

    ADS  Article  Google Scholar 

  11. [11]

    H. Kim et al., Surf. Sci. 651, 203 (2016).

    ADS  Article  Google Scholar 

  12. [12]

    G. Duvjir et al., Surf. Sci. 603, 2312 (2009).

    ADS  Article  Google Scholar 

  13. [13]

    H. Kim et al., Phys. Rev. B 81, 245422 (2010).

    ADS  Article  Google Scholar 

  14. [14]

    K. Miki, K. Sakamoto and T. Sakamoto, Appl. Phys. Lett. 71, 3266 (1997).

    ADS  Article  Google Scholar 

  15. [15]

    S. T. Jemander, H. M. Zhang, R. I. G. Uhrberg and G. V. Hansson, Phys. Rev. B 65 115321 (2002).

    ADS  Article  Google Scholar 

  16. [16]

    J. R. Ahn, H. S. Lee, Y. K. Kim and H. W. Yeom, Phys. Rev. B 69, 233306 (2004).

    ADS  Article  Google Scholar 

  17. [17]

    H. Nörenberg and G. A. D. Briggs, Surf. Sci. 430, 154 (1999).

    ADS  Article  Google Scholar 

  18. [18]

    M. Kuzmin et al., J. Phys. Chem. C 118, 1894 (2014).

    Article  Google Scholar 

  19. [19]

    J. He et al., J. Appl. Phys. 109, 083522 (2011).

    ADS  Article  Google Scholar 

  20. [20]

    K. F. Garrity, A. M. Kopak and S. Ismail-Beigi, J. Mater. Sci. 47, 7417 (2012).

    ADS  Article  Google Scholar 

  21. [21]

    Y. Cui and J. Nogami, Surf. Sci. 603, 3072 (2009).

    ADS  Article  Google Scholar 

  22. [22]

    H. Kim, A. Lkhagvasuren, R. Zhang and J. M. Seo, Appl. Surf. Sci. 439, 122 (2018).

    ADS  Article  Google Scholar 

  23. [23]

    I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007).

    ADS  Article  Google Scholar 

  24. [24]

    T. Mineva, R. Nathaniel, K. L. Kostov and W. Widdra, J. Chem. Phys. 125, 194712 (2006).

    ADS  Article  Google Scholar 

  25. [25]

    A. Pietzsch et al., Surf. Sci. 562, 65 (2004).

    ADS  Article  Google Scholar 

  26. [26]

    W. Kim et al., Phys. Rev. B 64, 193313 (2001).

    ADS  Article  Google Scholar 

  27. [27]

    L. Li et al., Phys. Rev. B 56, 4648 (1997).

    ADS  Article  Google Scholar 

  28. [28]

    H. Kim, W. Kim, G. Lee and J-Y. Koo, Phys. Rev. Lett. 94, 076102 (2005).

    ADS  Article  Google Scholar 

  29. [29]

    J. He, G. V. Hansson and R. I. G. Uhrberg, Appl. Surf. Sci. 252, 5284 (2006).

    ADS  Article  Google Scholar 

  30. [30]

    A. Goryachko et al., Surf. Sci. 497, 47 (2002).

    ADS  Article  Google Scholar 

  31. [31]

    S. H. Xu, Y. Yang, M. Keeffe and G. J. Lapeyre,. Rev. B 60, 11586 (1999).

    Article  Google Scholar 

  32. [32]

    I. N. Remediakis et al., Surf. Sci. 554, 90 (2004).

    ADS  Article  Google Scholar 

  33. [33]

    H. Koh, J. W. Kim, W. H. Choi and H. W. Yeom, Phys. Rev. B 67, 073306 (2003).

    ADS  Article  Google Scholar 

  34. [34]

    P. E. J. Eriksson and R. I. G. Uhrberg, Phys. Rev. B 81, 125443 (2010).

    ADS  Article  Google Scholar 

  35. [35]

    A. Fink et al., Phys. Rev. B 64, 045308 (2001).

    ADS  Article  Google Scholar 

  36. [36]

    H. W. Yeom et al., Phys. Rev. B 66, 115308 (2002).

    ADS  Article  Google Scholar 

  37. [37]

    S. Tanuma, C. J. Powell and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

    Article  Google Scholar 

  38. [38]

    L. Simon et al., Phys. Rev. B 64, 035306 (2001).

    ADS  Article  Google Scholar 

  39. [39]

    M. L. Shek, Surf. Sci. 414, 353 (1998).

    ADS  Article  Google Scholar 

  40. [40]

    K. Sakamoto et al., Phys. Rev. B 60, 2579 (1999).

    ADS  Article  Google Scholar 

  41. [41]

    C-P. Cheng, J-W. Huang, T-W. Pi and H-H. Lee, J. Appl. Phys. 99, 123708 (2006).

    ADS  Article  Google Scholar 

  42. [42]

    C-P. Cheng et al., Thin Solid Films 515, 2106 (2006).

    ADS  Article  Google Scholar 

  43. [43]

    M. De Seta, N. Tomozeiu, D. Sanvitto and F. Evangelisti, Surf. Sci. 460, 203 (2000).

    ADS  Article  Google Scholar 

  44. [44]

    J-H. et al., Surf. Coat. Technol. 131, 147 (2000).

  45. [45]

    H. J. Osten, M. Methfessel, G. Lippert and H. Rücker, Phys. Rev. B 52, 12179 (1995).

    ADS  Article  Google Scholar 

  46. [46]

    H. Kim et al., Surf. Sci. 347, 268 (2015).

    ADS  Article  Google Scholar 

  47. [47]

    C-W. Chung, S. H. Moon and S-W. Rhee, J. Vac. Sci. Technol. A 13, 2698 (1995).

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (No. NRF-2016R1D1A1B03934192). H.K. was also supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (No. NRF-2017R1D1A1A09000612).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hidong Kim or Jae M. Seo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Tuvdendorj, B., Tsogtbaatar, N. et al. Increased Stability of Subsurface C Induced by Ca on the C-Incorporated Si(001)-4°-off Substrate. J. Korean Phys. Soc. 76, 991–1000 (2020). https://doi.org/10.3938/jkps.76.991

Download citation

Keywords

  • Calcium
  • Carbon
  • Single-domain Si(001)
  • Scanning tunneling microscopy
  • Synchrotron photoemission spectroscopy