Skip to main content
Log in

The Effects of Boron Passivation and Re-Oxidation on the Properties of the 4H-SiC/SiO2 Interface

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the effect of boron passivation and re-oxidation on the properties of the silicon carbide/silicon dioxide interface. Metal-oxide-semiconductor capacitors were fabricated on 4H-silicon carbide substrates and the capacitance-voltage properties were measured. The high-low capacitance-voltage method was used to obtain the interface trap density from the capacitance-voltage curve. Boron passivation is known to be effective in reducing the size of carbon clusters at the silicon-carbide/silicon-dioxide interface. Also re-oxidation is known to be effective in improving the quality of the oxide and reducing the dangling bond set of the silicon-carbide/silicon-dioxide interface. The effect of each boron passivation and re-oxidation method on the silicon carbide/silicon dioxide interface was analyzed by observing the interface trap density obtained from the capacitance-voltage curves. We found that the interface trap density could be significantly improved; the best sample exhibited an interface trap density approximately 51% lower than that of the sample subjected to conventional oxidation via wet oxidation, boron passivation and wet re-oxidation. The interface of each sample was investigated with X-ray photoelectron spectroscopy, based on which we inferred that boron-passivation reduced the size of residue carbon clusters located at the silicon-carbide/silicon-dioxide interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Casady and R. W. Johnson, Solid-State Elec. 39, 1409 (1996).

    Article  ADS  Google Scholar 

  2. J. A. Cooper, Jr., Phys. Status Solidi A 162, 305 (1997).

    Article  ADS  Google Scholar 

  3. B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, NY, 2008).

    Book  Google Scholar 

  4. H. Morkoc et al., J.Appl. Phys. 76, 1363 (1994).

    Article  ADS  Google Scholar 

  5. K. McDonald et al., J.Appl. Phys. 93, 2719 (2003).

    Article  ADS  Google Scholar 

  6. L. Huang et al., Appl. Phys. Lett. 100, 263503 (2012).

    Article  ADS  Google Scholar 

  7. K. Ueno, R. Asai and T. Tsuji, IEEE Electron Device Lett. 19, 244 (1998).

    Article  ADS  Google Scholar 

  8. S. Dimitrijev, H-F. Li, J. B. Harrison and D. Sweatman, IEEE Electron Device Lett. 18, 175 (1997).

    Article  ADS  Google Scholar 

  9. M. Di Ventura and S. T. Pantelides, Phys. Rev. Lett. 83, 1624 (1999).

    Article  ADS  Google Scholar 

  10. V. V. Afanasev, M. Bassler, G. Pensl and M. Schulz, Phys. Stat. Sol. A Appl. Res. 162, 321 (1997).

    Article  ADS  Google Scholar 

  11. G. Duscher, Bull. Am. Phys. Soc. 45, 340 (2000).

    Google Scholar 

  12. K. C. Chang, N. T. Nuhfer, L. M. Porter and Q. Wahab, Appl. Phys. Lett. 77, 2186 (2000).

    Article  ADS  Google Scholar 

  13. R. C. De Meo, T. K. Wang, T. P. Chow, D. M. Brown and L.G. Matus, J. Electrochem.Soc. 141, 150 (1994).

    Article  Google Scholar 

  14. G. G. Jernigan, R. E. Stahlbus and N. S. Saks, Appl. Phys. Lett. 77, 1437 (2000).

    Article  ADS  Google Scholar 

  15. M. Losurdo, M. M. Giangregorio and G. Bruno, Appl. Phys. Lett. 85, 4034 (2004).

    Article  ADS  Google Scholar 

  16. R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105, 032106 (2014).

    Article  ADS  Google Scholar 

  17. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald and M. D. Ventra, Appl. Phys. Lett. 76, 1713 (2000).

    Article  ADS  Google Scholar 

  18. V. V. Afanasev, A. Stesmans, F. Ciobanu, G. Pensl, K. Y. Cheong and S. Dimitrijev, Appl. Phys. Lett. 82, 568 (2003).

    Article  ADS  Google Scholar 

  19. P. T. Lai, J. P. Xu and C. L. Chan, IEEE Electron Device Lett. 23, 410 (2002).

    Article  ADS  Google Scholar 

  20. K. Y. Cheong, W. Bahng and N. K. Kim, Appl. Phys. Lett. 90, 012120 (2007).

    Article  ADS  Google Scholar 

  21. D. Okamoto, H. Yano, K. Kirata, T. Hatayama and T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010).

    Article  ADS  Google Scholar 

  22. G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman and S. Dhar, IEEE Electron Device Lett. 34, 181 (2013).

    Article  ADS  Google Scholar 

  23. D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa and H. Yano, IEEE Electron Device Lett. 35, 1176 (2014).

    Article  ADS  Google Scholar 

  24. D. Okamoto, M. Sometani, S. Harada et al., Appl. Phys. A 123, 133 (2017).

    Article  ADS  Google Scholar 

  25. J. J. Shenoy, G. L. Chindalore, M. R. Melloch et al., JEM 24, 303 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the KIAT (Korea Institute for the Advancement of Technology), supervised by the MOTIE (Ministry of Trade, Industry and Energy)(N0001594) and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-0-01421) supervised by the IITP (Institute for Information & communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C., Kim, K. The Effects of Boron Passivation and Re-Oxidation on the Properties of the 4H-SiC/SiO2 Interface. J. Korean Phys. Soc. 74, 679–683 (2019). https://doi.org/10.3938/jkps.74.679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.679

Keywords

Navigation