Skip to main content
Log in

Electrical Observation of the Effective Mass in a Single-Crystal WTe2 Layer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In order to investigate the effective mass of a single-crystalline WTe2 layer, we measured the temperature dependence of the Shubnikov-de Haas oscillation. In this method, the magnetoresistance with a perpendicular magnetic field is monitored by changing the temperature from 1.9 K to 6 K. The extracted effective mass of WTe2 for magnetic fields ranging from 6.8 T to 8.7 T is m* = 0.327m0 which is almost constant in this range. The theoretical expectation values of m*/m0 for the valence and the conduction bands are 0.58 and 0.26, respectively; the experimental value of the effective mass is between these two values. Thus, our results clearly show that single-crystalline WTe2 has both electron- and hole-like pockets that simultaneously contribute to electrical transport in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Yan, E. Sagasta, M. Ribeiro, Y. Niimi, L. E. Hueso and F. Casanova, Nat. Commun. 8, 661 (2017).

    Article  ADS  Google Scholar 

  2. S. Liang, H. Yang, P. Renucci, B. Tao, P. Laczkowski, S. McMurtry, G. Wang, X. Marie, J-M. George, S. Petit-Watelot, A. Djeffal, S. Mangin, H. Jaffrès and Y. Lu, Nat. Commun. 8, 14947 (2017)

    Article  ADS  Google Scholar 

  3. A. Avsar, J. Y. Tan, M. Kurpas, M. Gmitra, K. Watanabe, T. Taniguchi, J. Fabian and B. Özyilmaz, Nat. phys. 13, 888 (2017).

    Article  Google Scholar 

  4. H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B-J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa and Y. Iwasa, Nat. Phys. 9, 563 (2013).

    Article  Google Scholar 

  5. K. Premasiri, S. K. Radha, S. Sucharitakul, U. R. Kumar, R. Sankar, F-C. Chou, Y-T. Chen and X. P. A. Gao, Nano Lett. 18, 4403 (2018).

    Article  ADS  Google Scholar 

  6. Z. Hou, C. Gong, Y. Wang, Q. Zhang, B. Yang, H. Zhang, E. Liu, Z. Liu, Z. Zeng, G. Wu, W. Wang and X. Zhang, J. Phys.: Condens. Matter 30, 085703 (2018).

    ADS  Google Scholar 

  7. Z. Zhu, X. Lin, J. Liu, B. Fauqué, Q. Tao, C. Yang, Y. Shi and K. Behnia, Phys. Rev. Lett. 114, 176601 (2015).

    Article  ADS  Google Scholar 

  8. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong and R. J. Cava, Nature 514, 205 (2014).

    Article  ADS  Google Scholar 

  9. HQ Graphene, http://www.hqgraphene.com.

  10. Tektronix, http://www.tek.com.

  11. H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han and M. Johnson, Science 325, 1515 (2009).

    Article  ADS  Google Scholar 

  12. W. Y. Choi, H. Kim, J. Chang, S. H. Han, H. C. Koo and M. Johnson, Nat. Nanotech. 10, 666 (2015).

    Article  ADS  Google Scholar 

  13. Y. Zhao, H. Liu, J. Yan, W. An, J. Liu, X. Zhang, H. Wang, Y. Liu, H. Jiang, Q. Li, Y. Wang, X-Z. Li, D. Mandrus, X. C. Xie, M. Pan and J. Wang, Phys. Rev. B 92, 041104 (2015).

    Article  ADS  Google Scholar 

  14. L. R. Thoutam, Y. L. Wang, Z. L. Xiao, S. Das, A. Luican-Mayer, R. Divan, G. W. Crabtree and W. K. Kwok, Phys. Rev. Lett. 115, 046602 (2015).

    Article  ADS  Google Scholar 

  15. L. Wang, I. Gutiérrez-Lezama, C. Barreteau, N. Ubrig, E. Giannini and A. F. Morpurgo, Nat. Commun. 6, 8892 (2015).

    Article  Google Scholar 

  16. Sudesh, P. Kumar, P. Neha, T. Das and S. Patnaik, Sci. Rep. 7, 46062 (2017).

    Article  ADS  Google Scholar 

  17. J. Tian, C. Chang, H. Cao, K. He, X. Ma, Q. Xue and Y. P. Chen, Sci. Rep. 4, 4859 (2014).

    Article  ADS  Google Scholar 

  18. F-X. Xiang, M. Veldhorst, S-X. Dou and X-L. Wang, EPL 112, 37009 (2015).

    Article  ADS  Google Scholar 

  19. Y. H. Park, H. C. Koo, K. H. Kim, H. Kim, J. Chang and S. H. Han, J. Korean Phys. Soc. 57, 1929 (2010).

    Article  ADS  Google Scholar 

  20. N. Tang, B. Shen, M. J. Wang, Z. J. Yang, K. Xu, G. Y. Zhang, Y. S. Gui, B. Zhu, S. L. Guo, J. H. Chu, K. Hoshino and Y. Arakawa, Phys. Status Solidi C 3, 2246 (2006).

    Article  ADS  Google Scholar 

  21. D. R. Hang, C-T. Liang, C. F. Huang, Y. H. Chang, Y. F. Chen, H. X. Jiang and J. Y. Lin, Appl. Phys. Lett. 79, 66 (2001).

    Article  ADS  Google Scholar 

  22. J. Darío Perea, J. R. Mejía-Salazar and N. Porras-Montenegro, J. Phys.: Condens. Matter 23, 065303 (2011).

    ADS  Google Scholar 

  23. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond and V. Fal’ko, 2D Mater. 2, 022001 (2015).

    Article  Google Scholar 

  24. J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  ADS  Google Scholar 

  25. P. K. Das, D. Di Sante, I. Vobornik, J. Fujii, T. Okuda, E. Bruyer, A. Gyenis, B. E. Feldman, J. Tao, R. Ciancio, G. Rossi, M. N. Ali, S. Picozzi, A. Yadzani, G. Panaccione and R. J. Cava, Nat. Commun. 7, 10847 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Cheol Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Park, TE., Jang, C. et al. Electrical Observation of the Effective Mass in a Single-Crystal WTe2 Layer. J. Korean Phys. Soc. 74, 154–158 (2019). https://doi.org/10.3938/jkps.74.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.154

Keywords

Navigation