Skip to main content
Log in

Influence of Bi Excess on the Structural and Morphological Properties of Bi0.5K0.5TiO3 Synthesized by Using the Hydrothermal Method and Its Nanogenerator Properties

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study investigated the effects of an excess of bismuth in Bi0.5K0.5TiO3 (BKT) on its structural and morphological properties. Two types of BKT samples were prepared using bismuth stoichiometry, where one with a Bi:K molar ratio of 1:1 (S-BKT) and the other with a ratio of 1.1:1 with 10 mol% excess of Bi (10% BKT). These samples were prepared using the hydrothermal synthesis method. When the X-ray diffraction (XRD) data for the two samples were compared, the 10% BKT shows a 1.3 times larger than that for the S-BKT sample in the ratio of the secondary phase peak to the BKT (101) peak at approximately 29.3°. Morphology analysis showed that both samples had agglomerations with diameters of approximately 200 nm and nanowires with lengths of 1–2 μm and diameters of 8 nm. The fractions of the total area occupied by agglomerations in the two samples were estimated at approximately 95% for 10% BKT and approximately 45% for S-BKT. These results indicate that an excess of bismuth affects the secondary phase and agglomeration formation. Nanogenerators were prepared by mixing S-BKT, and their output voltages were 1.8 V and their outputs currents were 4 nA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Wu et al., ACS Nano 6, 6231 (2012).

    Article  Google Scholar 

  2. J. Kim et al., Nano Lett. 8, 1813 (2008).

    Article  ADS  Google Scholar 

  3. J. K. Han et al., Sci. Rep. 6, 29562 (2016).

    Article  ADS  Google Scholar 

  4. J. K. Han et al., Nanomaterials 7, 308 (2017).

    Article  ADS  Google Scholar 

  5. Z. L. Wang and J. Song, Science 321, 242 (2006).

    Article  ADS  Google Scholar 

  6. C. F. Buhrer, J. Chem. Phys. 36, 798 (1962).

    Article  ADS  Google Scholar 

  7. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  ADS  Google Scholar 

  8. R. Zuo, X. Fang and C. Ye, J. Am. Ceram. 90, 2424 (2007).

    Article  Google Scholar 

  9. H. Matsuo et al., J. Appl. Phys. 108, 104103 (2010).

    Article  ADS  Google Scholar 

  10. Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005).

    Article  ADS  Google Scholar 

  11. Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 46, 1081(2007).

    Article  ADS  Google Scholar 

  12. K. Tabuchi, H. Nagata and T. Takenaka, J. Ceram. Soc. Jpn. 121, 623 (2013).

    Article  Google Scholar 

  13. J. König et al., J. Eur. Ceram. Soc. 29, 1695 (2009).

    Article  Google Scholar 

  14. T. Zaremba, J. Therm. Anal. Calorim. 74, 653 (2003).

    Article  Google Scholar 

  15. M. Hagiwara and S. Fujihara, J. Mater. Sci. 50, 5970 (2015).

    Article  ADS  Google Scholar 

  16. M. Yoshimura and K. Byrappa, J. Mater. Sci. 43, 2085 (2007).

    Article  ADS  Google Scholar 

  17. M. M. Lencka, M. Oledzka and R. E. Riman, Chem. Mater. 12, 1323 (2000).

    Article  Google Scholar 

  18. J. Chen and J. Cheng, J. Alloys. Comp. 589, 115 v.

  19. A. Z. Simões et al., Mater. Lett. 59, 656 (2005).

    Article  Google Scholar 

  20. S. Y. Cho et al., Curr. Appl. Phys. 15, 1332 (2015).

    Article  ADS  Google Scholar 

  21. S. A. Yang, B. H. Kim and S. D. Bu, Ferroelectrics 533, 49 (2018).

    Article  Google Scholar 

  22. S. W. Kang et al., J. Korean Phys. Soc. 72, 1209 (2018).

    Article  ADS  Google Scholar 

  23. S. W. Kang, S. Y. Cho, S. D. Bu and J. K. Han, J. Korean Phys. Soc. 72, 800 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by “Research Base Construction Fund Support Program” funded by Chonbuk National University in 2018, and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2B6006740), and by a cooperation project of “SI1803-01 (Development of smart chemical materials for IoT devices)” by the Korea Research Institute of Chemical Technology (KRICT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Don Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Kim, E.Y., Bu, S.D. et al. Influence of Bi Excess on the Structural and Morphological Properties of Bi0.5K0.5TiO3 Synthesized by Using the Hydrothermal Method and Its Nanogenerator Properties. J. Korean Phys. Soc. 74, 1027–1031 (2019). https://doi.org/10.3938/jkps.74.1027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.1027

Keywords

Navigation