Skip to main content
Log in

Fluorescence and Raman Enhancement Effect Caused by a Chemical Mechanism in Metal-Tetraphenylporphyrin on 2D Layered Materials

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) layered materials exhibiting a flat surface have been strong candidates for studies investigating both the fundamental Raman enhancement in these materials and their practical applications. Here, we explore the Raman and the fluorescence enhancement effects of metal-tetraphenylporphyrin (TPP) molecules on graphene and MoSe2. We attribute the enhancement behaviors to the charge transfer interaction between the 2D materials and the adsorbates. The enhancement factors for the two flat substrates are dissimilar due to the charge transfer ability resulting from the electronic structures. The charge transfer interaction can be explained by the adsorption probability based on Langmuir’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Louie, Chem. Rev. 110, 3146 (2010).

    Article  Google Scholar 

  2. A. Mishra, M. K. R. Fisher and P Bäuerle, Angew. Chem. Int. Ed. 48, 2474 (2009).

    Article  Google Scholar 

  3. J. Koo, Y. I. Jhon, J. Park, J. lee, Y. M. Jhon and J. H. Lee, Adv. Func. Mater. 26, 7454 (2016).

    Article  Google Scholar 

  4. Y. I. Jhon, Y. Kim, J. Park, J. H. Kim, T. Lee, M, Seo and Y, M, Jhon, Adv. Func. Mater. 26, 7551 (2016).

    Article  Google Scholar 

  5. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi and Y. M. Jhon, Adv. Mater. 29, 1702496 (2017).

    Article  Google Scholar 

  6. A. Campion and P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998).

    Article  Google Scholar 

  7. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley-Intersciecne, New York, 2000).

    Book  Google Scholar 

  8. R. J. H. Clark and T. J. Dines, Angew. Chem. Int. Ed. Engl. 25, 131 (1986).

    Article  Google Scholar 

  9. A. G. Brolo, D. E. Irish and B. D. Smith, J. Mol. Struct. 405, 29 (1997).

    Article  ADS  Google Scholar 

  10. R. Petry, M. Schmitt and J. Popp, ChemPhysChem 4, 14 (2003).

    Article  Google Scholar 

  11. A. Otto, I. Mrozek, H. Grabhorn and W. Akemann, J. Phys.: Condens. Matter 4, 1143 (1992).

    ADS  Google Scholar 

  12. K. Chen, M. Leona and T. Vo-Dinh, Sens. Rev. 27, 109 (2007).

    Article  Google Scholar 

  13. G. C. Schatz, M. A. Young and R. P. Duyne, (Springer, Berlin, Heidelberg, 2006), p. 19.

  14. B. N. J. Persson, K. Zhao and Z. Zhang, Phys. Rev. Lett. 96, 207401 (2006).

    Article  ADS  Google Scholar 

  15. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

    Article  ADS  Google Scholar 

  16. W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu and J. Zhang, Proceedings of the National Academy of Sciences 109, 9281 (2012).

    Article  ADS  Google Scholar 

  17. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang and Z. Liu, Nano Lett. 10, 553 (2010).

    Article  ADS  Google Scholar 

  18. P. Maitarad, S. Namuangruk, D. Zhang, L. Shi, H. Li, L. Huang, B. Boekfa and M. Ehara, Environ. Sci. Technol. 17, 48 (2014).

    Google Scholar 

  19. H. Bae, M. Park, B. Jang, Y. Kang, J. Park, H. Lee, H. Chung, C. Chung, S. Hong, Y. Kwon, B. I. Yakobson and H. Lee, Sci. Rep. 6, 21788 (2016).

    Article  ADS  Google Scholar 

  20. X. Ling, W. Fang, Y-H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong and M. S. Dresselhaus, Nano Lett. 14, 3033 (2014).

    Article  ADS  Google Scholar 

  21. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Article  ADS  Google Scholar 

  22. J. C. Shaw, H. Zhou, Y. Chen, N. O. Weiss, Y. Liu, Y. Huang and X. Duan, Nano Research 7, 511 (2015).

    Article  Google Scholar 

  23. X. Lu, M. I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S. T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou and Q. Xiong, Nano Lett. 14, 2419 (2014).

    Article  ADS  Google Scholar 

  24. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman and J. Wu, Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  25. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  26. A. C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  ADS  Google Scholar 

  27. F. Paulat, V. K. K. Praneeth, C. Näther and N. Lehnert, Inorg. Chem. 45, 2835 (2006).

    Article  Google Scholar 

  28. H. Oshio, T. Ama, T. Watanabe, J. Kincaid and K. Nakamoto, Spectrochim. Acta Part A 40, 863 (1984).

    Article  ADS  Google Scholar 

  29. H-Z. Yu, J. S. Baskin and A. H. Zewail, J. Phys. Chem. A 106, 9845 (2002).

    Article  Google Scholar 

  30. F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim, A. N. Grigorenko, K. S. Novoselov and A. C. Ferrari, ACS Nano 4, 5617 (2010).

    Article  Google Scholar 

  31. T. Ichii, Y. Hosokawa, K. Kobayashi, K. Matsushige and H. Yamada, Appl. Phys. Lett. 94, 133110 (2009).

    Article  ADS  Google Scholar 

  32. Y. Uehara and S. Ushioda, Appl. Phys. Lett. 86, 181905 (2005).

    Article  ADS  Google Scholar 

  33. N. J. Tao, Phys. Rev. Lett. 76, 4066 (1996).

    Article  ADS  Google Scholar 

  34. S. Karthikeyan and J. Y. Lee, J. Phys. Chem. A 117, 10973 (2013).

    Article  Google Scholar 

  35. N. S. Sariciftci, A. J. Heeger, V. Krasevec, P. Venturini, D. Mihailovic, Y. Cao, J. Libert and J. L. Brédas, Synth. Met. 62, 107 (1994).

    Article  Google Scholar 

  36. Z. Chen, P. Darancet, L. Wang, A. C. Crowther, Y. Gao, C. R. Dean, T. Taniguchi, K. Watanabe, J. Hone, C. A. Marianetti and L. E. Brus, ACS Nano 8, 2943 (2014).

    Article  Google Scholar 

  37. S. Mouri, Y. Miyauchi and K. Matsuda, Nano Lett. 13, 5944 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Jhon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jhon, Y.M. Fluorescence and Raman Enhancement Effect Caused by a Chemical Mechanism in Metal-Tetraphenylporphyrin on 2D Layered Materials. J. Korean Phys. Soc. 74, 102–106 (2019). https://doi.org/10.3938/jkps.74.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.102

Keywords

Navigation