Skip to main content
Log in

Theoretical Study of the Elastic and the Thermodynamic Properties of Re2C under High Pressure

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The structural properties of Re2C in anti-MoS2 and anti-ReB2 structures have been investigated by using the pseudopotential plane wave methods based on the density functional theory. The anti-ReB2 structure is found to be more stable than the anti-MoS2 structure. In particular, for the first time, we have studied the elastic properties of Re2C in the anti-ReB2 structure under high pressure. The ductile-brittle behavior and Vickers hardness for the anti-ReB2 structure are also been analyzed. In addition, the Debye temperature, heat capacity and thermal expansion coefficient are discussed by using the quasiharmonic Debye model method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  2. K. Kobayashi, Jpn. J. Appl. Phys. 39, 4311 (2000).

    Article  ADS  Google Scholar 

  3. H. Li et al., Solid State Commun. 151, 602 (2011).

    Article  ADS  Google Scholar 

  4. R. Jeanloz, B.K. Godwal and C. Meade, Nature 349, 687 (1991).

    Article  ADS  Google Scholar 

  5. Y. K. Vohra, S.J. Duclos and A. L. Ruoff, Phys. Rev. B 36, 9790 (1987).

    Article  ADS  Google Scholar 

  6. J. Yang and F. Gao, Phys. B 407, 3527 (2012).

    Article  ADS  Google Scholar 

  7. E.A. Juarez-Arellano et al., Z. Kristallogr. 223, 492 (2008).

    Google Scholar 

  8. A. Friedrich, B. Winkler, E.A. Juarez-Arellano and L. Bayarjargal, Mater. 4, 1648 (2011).

    Article  Google Scholar 

  9. Z. Zhao et al., Cryst. Growth Des. 10, 5024 (2010).

    Article  Google Scholar 

  10. H. Ozisik, E. Deligoz, K. Colakoglu and G. Surucu, Phys. Status Solidi RRL 4, 347 (2010).

    Article  Google Scholar 

  11. N. Miao et al., Solid State Commun. 151, 1842 (2011).

    Article  ADS  Google Scholar 

  12. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  13. M. D. Segall et al., J. Phys.: Condens. Matter. 14, 2717 (2002).

    ADS  Google Scholar 

  14. B. G. Pfrommer, M. Cote, S.G. Louie and M. L. Cohen, J. Comp. Physiol. 131, 233 (1997).

    Article  ADS  Google Scholar 

  15. D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).

    Book  Google Scholar 

  16. J. H. Wang et al., Phys. Rev. B 52, 12627 (1995).

    Article  ADS  Google Scholar 

  17. T. H. K. Barron and M. L. Klein, Proc. Phys. Soc. 85, 523 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. M. A. Blanco, E. Francisco and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  ADS  Google Scholar 

  19. J. Wang and J. Sun, Phys. Status Solidi B 247, 921 (2010).

    Google Scholar 

  20. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  ADS  Google Scholar 

  21. E. A. Juarez-Arellano et al., J. Alloys Compd. 481, 577 (2009).

    Article  Google Scholar 

  22. A. Bouhemadou and R. Khenata, Phys. Lett. A 360, 339 (2006).

    Article  ADS  Google Scholar 

  23. L. Louail, D. Maouche, A. Roumili and F. A. Sahraoui, Mater. Lett. 58, 2975 (2004).

    Article  Google Scholar 

  24. H.R. Lei et al., Phys. B 458, 124 (2015).

    Article  ADS  Google Scholar 

  25. R. Hill, Proc. R. Soc. Lond. A 65, 349 (1952).

    Article  Google Scholar 

  26. E. Schreiber, O.L. Anderson and N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973).

    Google Scholar 

  27. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  28. I. N. Frantsevich, F.F. Voronov and S. A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators (Naukova Dumka, Kiev, 1983).

    Google Scholar 

  29. G. Steinle-Neumann, L. Stixrude and R. E. Cohen, Phys. Rev. B 60, 791 (1999).

    Article  ADS  Google Scholar 

  30. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).

    MATH  Google Scholar 

  31. H. Rached et al., Mater. Chem. Phys. 143, 93 (2013).

    Article  Google Scholar 

  32. Y. J. Tian, B. Xu and Z. S. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012).

    Article  Google Scholar 

  33. P. Ravindran, L. Fast, P.A. Korzhavyi and B. Johansson, J. Appl. Phys. 84, 4891 (1998).

    Article  ADS  Google Scholar 

  34. O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support from the Scientific Research Start-Up Project of Shanxi Institute of Technology under Grant No. 201706002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ru Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, HR., Zhang, LH., Li, X. et al. Theoretical Study of the Elastic and the Thermodynamic Properties of Re2C under High Pressure. J. Korean Phys. Soc. 74, 1004–1010 (2019). https://doi.org/10.3938/jkps.74.1004

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.1004

Keywords

Navigation