Skip to main content
Log in

Quantum Computing Systems: A Brief Overview

  • Overview Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A classical simulation of quantum systems demands enormous computational resources. The dimension of underlying Hilbert space scales exponentially with the number of participating elements (N), requiring a 22N size of calculation matrix for a unitary operation, for example, 2100 ≈ 1030 for only N = 50. With the increase of N, the first obstacle to encounter is in fact the deficiency of computer memories. A straightforward resolution is to use a quantum computer, a calculating device that operates with the principle of quantum mechanics. During the last twenty years, quantum computing once considered as theoretical exercise has become an important field of research in modern physics. At the forefront of quantum information technology, quantum computing has emerged as a new engineering field with broad interest not only in physics but also in computer science, electronics engineering, and mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J. L. O’Brien Nature 464, 45 (2010).

    Article  ADS  Google Scholar 

  2. D. P. DiVincenzo, Fortschritte der Physik (Progress of Physics) 48, 771 (2000).

    Article  ADS  Google Scholar 

  3. J. L. O’Brien, Science 318, 1567 (2007).

    Article  ADS  Google Scholar 

  4. P. Schindler et al., New J. Phys. 15, 123012 (2013).

    Article  Google Scholar 

  5. D. Weiss and M. Saffman, Phys. Today 70, 44 (2017).

    Google Scholar 

  6. D. D. Awschalom et al., Science 339, 1174 (2013).

    Article  ADS  Google Scholar 

  7. M. Veldhorst et al., Nature 526, 410 (2015).

    Article  ADS  Google Scholar 

  8. J. M. Gambetta, J. M. Chow and M. Steffen, NPJ Quantum Inf. 3, 2 (2017).

    Article  ADS  Google Scholar 

  9. L. Childress and R. Hanson, MRS Bulletin 38, 134 (2013).

    Article  Google Scholar 

  10. Timeline of quantum computing (2018, June 13) Retrieved from https://en.wikipedia.org/wiki/Timeline of quantum computing.

  11. M. H. Devoret and R. J. Schelkopf, Science 339, 1169 (2013).

    Article  ADS  Google Scholar 

  12. J. Chiaverini et al., Nature 432, 602 (2004).

    Article  ADS  Google Scholar 

  13. J. Kelly et al., Nature 519, 66 (2015).

    Article  ADS  Google Scholar 

  14. C. Sayrin et al., Nature 477, 73 (2011).

    Article  ADS  Google Scholar 

  15. C. Ottaviani and D. Vitali, Phys. Rev. A 82, 012319 (2010).

    Article  ADS  Google Scholar 

  16. R. Blatt and D. Wineland, Nature 453, 1008 (2008).

    Article  ADS  Google Scholar 

  17. L-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).

    Article  ADS  Google Scholar 

  18. Y. Wang et al., Nat. Photon. 11, 646 (2017).

    Article  ADS  Google Scholar 

  19. F. Schmidt-Kaler et al., Nature 422, 408 (2003).

    Article  ADS  Google Scholar 

  20. J. Chiaverini et al., Science 308, 997 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Monz et al., Phys. Rev. Lett. 106, 130506 (2011).

    Article  Google Scholar 

  22. M. Jachura and R. Chrapkiewicz, Opt. Lett. 40, 1540 (2015).

    Article  ADS  Google Scholar 

  23. C. Monroe and J. Kim, Science 339, 1164 (2013).

    Article  ADS  Google Scholar 

  24. D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark and C. Monroe, Nat. Phys. 11, 37 (2015).

    Article  Google Scholar 

  25. A. Megrant et al., Appl. Phys. Lett. 100, 113510 (2012).

    Article  ADS  Google Scholar 

  26. A. D. Córcoles et al., Nat. Comm. 6, 6979 (2015).

    Article  Google Scholar 

  27. A. Perdomo-Ortiz et al., Sci. Reports 2, 571 (2012).

    Article  Google Scholar 

  28. T. Lanting et al., Phys. Rev. X 4, 021041 (2014).

    Google Scholar 

  29. A. Cho, Science 344, 1330 (2014).

    Article  ADS  Google Scholar 

  30. R. Barends et al., Nature 508, 500 (2014).

    Article  ADS  Google Scholar 

  31. M. Saffman, T. G. Walker and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

  32. M. Saffman, J. Phys. B: At. Mol. Opt. Phys. 49, 202001 (2016).

    Article  ADS  Google Scholar 

  33. L. Isenhower et al., Phys. Rev. Lett. 104, 010503 (2010).

    Article  Google Scholar 

  34. H. Kim, W. Lee, H-G. Lee, H. Jo, Y. Song and J. Ahn, Nat. Comm. 7, 13317 (2016).

    Article  ADS  Google Scholar 

  35. D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000).

    Article  ADS  Google Scholar 

  36. S. Haroche, Rev. Mod. Phys. 85, 1084 (2013).

    Google Scholar 

  37. C. Ottaviani and D. Vitali, Phys. Rev. A 82, 012319 (2010).

    Article  ADS  Google Scholar 

  38. M. Martinez-Dorantes, W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Völzke and D. Meschede, Phys. Rev. Lett. 119, 180503 (2017).

    Article  ADS  Google Scholar 

  39. M. Kwon, M. F. Ebert, T. G. Walker and M. Saffman, Phys. Rev. Lett. 119, 180504 (2017).

    Article  Google Scholar 

  40. R. A. de Oliveira et al., Phys. Rev. Lett. 90, 023848 (2014).

    Google Scholar 

  41. W. Dr, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  42. T. Wang et al., Phys. Rev. A 75, 033802 (2007).

    Article  ADS  Google Scholar 

  43. E. Brion, F. Carlier, V. M. Akulin and K. Mølmer, Phys. Rev. A 85, 042324 (2012).

    Article  ADS  Google Scholar 

  44. M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner and M. D. Lukin, Science 354, 1024 (2016).

    Article  ADS  Google Scholar 

  45. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye and A. Browaeys, Science 354, 1021 (2016).

    Article  ADS  Google Scholar 

  46. H. Kim, Y. Park, H-S. Sim and J. Ahn, Phy. Rev. Lett. 120, 180502 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Samsung Science and Technology Foundation [SSTF-BA1301-12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewook Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anukool, W., Lim, J., Song, Y. et al. Quantum Computing Systems: A Brief Overview. J. Korean Phys. Soc. 73, 841–845 (2018). https://doi.org/10.3938/jkps.73.841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.841

Keywords

Navigation