Skip to main content
Log in

A Few Selected Topics in Extreme Astrophysical Phenomena: Gamma-ray Burst as a Source of Multi-messenger Astrophysics and Cosmic Particles as a Would-be Messenger

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

These days of astrophysics are full of exciting discoveries. Gravitational waves are directly found for the first time by Laser Interferometer Gravitational-wave Observatory. Merging of compact astrophysical objects (neutron star and neutron star) is detected via multi-messengers of gravitational wave and all wavelengths of photons for the first time by worldwide observatories on ground and in space. Interesting unknowns of the gamma-ray sky are introduced by Fermi, and many details of gamma-ray bursts (GRBs) become unveiled by the Swift space mission and ground based observatories. Astrophysical neutrinos with the highest energy are detected by the IceCube telescope. Hot and Warm sports, anisotropy of ultra-high energy cosmic rays, are found by the Telescope Array and Pierre Auger observatories, respectively. The spectral break in cosmic rays around 200 GeV is discovered and verified for all elements of cosmic rays, which requires a completely different paradigm in cosmic ray propagation. Combining all of those information allows us to learn the structure and evolution of the universe including thermal and non-thermal astrophysical sources, their spatial distributions, time evolutions and properties. Here we overview a few topics particularly emphasizing GRBs, as sources of multi-messenger astrophysics, in connection to GWs, neutrinos, and cosmic rays. Finally we introduce our space experiments on GRBs and cosmic rays for those physics targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Barish and R. Weiss, Physics Today. 52, 10 (1999).

    Google Scholar 

  2. N. Gehrels et al., Astrophys. J. 611, 1005 (2004).

    Article  ADS  Google Scholar 

  3. The IceCube Collaboration, Astropart. Phys. 26, 155 (2006).

    Article  ADS  Google Scholar 

  4. E. Waxman, Nucl. Phys. B, Proc. Suppl. 151, 46 (2006).

    Article  ADS  Google Scholar 

  5. The Telescope Array Collaboration, Nucl. Instrum. Meth. A 689, 87 (2012).

    Article  Google Scholar 

  6. The Pierre Auger Collaboration, Nucl. Instrum. Meth. A 798, 172 (2015).

    Article  ADS  Google Scholar 

  7. B. P. Abbott et al., Astrophys. J. 848, 12 (2017).

    Article  ADS  Google Scholar 

  8. B. P. Abbott et al., Phys. Rev. Lett. 119, 16 (2017).

    Google Scholar 

  9. The Virgo collaboration, JInst. 7, P0312 (2012).

    Google Scholar 

  10. B. P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017).

    Article  ADS  Google Scholar 

  11. M. G. Aartsen et al., Science 361, 1378 (2018).

    ADS  Google Scholar 

  12. M. G. Aartsen et al., Science 342, 1242856 (2013).

    Article  Google Scholar 

  13. M. G. Aartsen et al., Astrophys. J. 833, 3 (2016).

    Article  ADS  Google Scholar 

  14. V. Lipunov et al., Adv. Astron. 2010, 349171 (2010).

    ADS  Google Scholar 

  15. A. J. Castro-Tirado et al., ASI Conference Series. 7, 314 (2013).

    Google Scholar 

  16. R. W. Klebesadel et al., Astrophys. J. 182, 85 (1973).

    Article  Google Scholar 

  17. R. Salvaterra et al., Nature 461, 1258 (2009).

    Article  ADS  Google Scholar 

  18. N. R. Tanvir et al., Nature 461, 1254 (2009).

    Article  ADS  Google Scholar 

  19. D. Q. Lamb and D. E. Reichart, Astrophys. J. 536, 1 (2000).

    Article  ADS  Google Scholar 

  20. V. Bromm and A. Loeb, Astrophys. J. 642, 382 (2006).

    Article  ADS  Google Scholar 

  21. M. D. Kistler et al., Astrophys. J. 705, L104 (2009).

    Article  ADS  Google Scholar 

  22. L. Amati et al., Mon. Not. R. Astron. Soc. 391, 577 (2008).

    Article  ADS  Google Scholar 

  23. G. Ghirlanda et al., New J. Phys. 8, 123 (2006).

    Article  ADS  Google Scholar 

  24. A. Panaitescu and W. Vestrand, Mon. Not. R. Astron. 387, 497 (2008).

    Article  ADS  Google Scholar 

  25. D. Kocevski, Astrophys. J. 747 146 (2012).

    Article  ADS  Google Scholar 

  26. B. Zhang et al., Astrophys. J. 703, 1696 (2009).

    Article  ADS  Google Scholar 

  27. J. Greiner et al., Astron. Astrophys. 526, 10 (2011).

    Google Scholar 

  28. S. Naoz and O. Bromberg, Mon. Not. R. Astron. Soc. 380, 757 (2007).

    Article  ADS  Google Scholar 

  29. C. Cutler and K. S. Thorne, arXiv:gr-qc/0204090 (2002).

  30. A. Abramovici et al., Science 256, 325 (1992).

    Article  ADS  Google Scholar 

  31. B. P. Abbott et al., Astrophys. J. 13, 826L (2016).

    Google Scholar 

  32. H. Tokuno et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 676, 54 (2012).

    Article  ADS  Google Scholar 

  33. J. Abraham et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 523, 50 (2004).

    Article  ADS  Google Scholar 

  34. M. I. Panasyuk et al., J. Cosmol. 18, 7964 (2012).

    Google Scholar 

  35. Y. Takahashi, New J. Phys. 11, 065009 (2009).

    Article  Google Scholar 

  36. F. Halzen and S. R. Klein, Rev. Sci. Instrum. 81, 08110 (2010).

    Google Scholar 

  37. P. W. Gorham et al., Astropart. Phys. 32, 10 (2009).

    Article  ADS  Google Scholar 

  38. B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  39. T. Piran et al., Mon. Not. R. Astron. Soc. 430, 2121 (2013).

    Article  ADS  Google Scholar 

  40. L. Dessart et al., Astrophys. J. 690, 1681 (2009).

    Article  ADS  Google Scholar 

  41. J. Abadie et al., Class. Quant. Grav. 27, 173001 (2010).

    Article  ADS  Google Scholar 

  42. B. Sathyaprakash et al., Class. Quant. Grav. 29, 124013 (2012).

    Article  ADS  Google Scholar 

  43. B. P. Abbott et al., arXiv:1710.05835 (2017).

  44. N. Dalal et al., Phys. Rev. D 74, 063006 (2006).

    Article  ADS  Google Scholar 

  45. L. Amati et al., arXiv1306.5259v1 (2013).

  46. J. K. Becker et al., Phys. Rep. 458, 172 (2008).

    Google Scholar 

  47. E. Waxman et al., Phys. Rev. Lett. 78, 2292 (1997).

    Article  ADS  Google Scholar 

  48. R. Abbasi et al., Nature 484, 351 (2012).

    Article  ADS  Google Scholar 

  49. S. Hummer et al., Phys. Rev. Lett. 108, 231101 (2012).

    Article  ADS  Google Scholar 

  50. J. Hjorth et al., Nature 423, 847 (2003).

    Article  ADS  Google Scholar 

  51. A. Letessier-Selvon et al., Rev. Mod. Phys. 83, 907 (2011).

    Article  ADS  Google Scholar 

  52. A. M. Hillas et al., Annu. Rev. Astron. Astrophys. 22, 425 (1984).

    Article  ADS  Google Scholar 

  53. E. Waxman, Phys. Rev. Lett. 75, 386 (1995).

    Article  ADS  Google Scholar 

  54. M. Vietri, Astrophys. J. 453, 883(1995).

    Article  ADS  Google Scholar 

  55. M. Milgrom and V. Usov, Astrophys. J. 449, L37 (1995).

    ADS  Google Scholar 

  56. R. U. Abbasi et al., Astrophysical Journal Letters 790, L21 (2014).

    Article  ADS  Google Scholar 

  57. V. A. Sadovnichii et al., Space Sci. Rev. 212, 1705 (2017).

    Article  ADS  Google Scholar 

  58. E. Fermi, Phys. Rev. 75, 1169 (1949).

    Article  ADS  Google Scholar 

  59. V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic Rays (New York: Macmillan, 1964).

    Google Scholar 

  60. W. Axford, E. Lear and G. Skadron, in Proceedings of the 17th ICRC (Plovdiv, Bulgaria) (Bulgarian Academy of Sciences, Sofia, Bulgaria, 1977), p. 132.

    Google Scholar 

  61. A. R. Bell, Mon. Not. R. Astron. Soc. 182, 443 (1978).

    Article  ADS  Google Scholar 

  62. R. D. Blandford and J. P. Ostriker, Astrophys. J. 221, L29 (1978).

    Article  ADS  Google Scholar 

  63. L. O. Drury, Rep. Prog. Phys. 46, 973 (1983).

    Article  ADS  Google Scholar 

  64. R. Blandford and D. Eichler, Phys. Rep. 154, 1 (1987).

    Article  ADS  Google Scholar 

  65. J. R. Jokipii, Astrophys. J. 313, 842 (1987).

    Article  ADS  Google Scholar 

  66. F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).

    Article  ADS  Google Scholar 

  67. A. R. Bell, Mon. Not. R. Astron. Soc. 353, 550 (2004).

    Article  ADS  Google Scholar 

  68. A. Achterberg, Y. A. Gallant, J. G. Kirk and A. W. Guthmann, Mon. Not. R. Astron. 328, 393 (2001).

    Article  ADS  Google Scholar 

  69. E. G. Berezhko, Astropart. Phys. 5, 367 (1996).

    Article  ADS  Google Scholar 

  70. V. Ptuskin, V. Zirakashvili and E. Seo, Astrophys. J. 718, 31 (2010).

    Article  ADS  Google Scholar 

  71. I. H. Park et al., Nucl. Instr. and Meth. A 570, 286 (2007).

    Article  ADS  Google Scholar 

  72. S. Nam et al., IEEE Tr. Nucl. Sci. 54, 1743 (2007).

    Article  ADS  Google Scholar 

  73. H. S. Ahn et al., Astrophysical J. 715, 1400 (2010).

    Article  ADS  Google Scholar 

  74. H. S. Ahn et al., Astrophysical J. 714, L89 (2010).

    Article  ADS  Google Scholar 

  75. Tanvir, arXiv:1307.6156v1 (2013).

  76. N. Produit et al., Nucl. Instrum. Methods A 550, 616 (2005).

    Article  ADS  Google Scholar 

  77. J. Paul et al., C. R. Phys. 12, 298 (2011).

    Article  ADS  Google Scholar 

  78. P. W. A. Roming et al., Mem. Soc. Astron. Suppl. 21, 155 (2012).

    Google Scholar 

  79. I. H. Park et al., New J. Phys. 15, 023031 (2013).

    Article  Google Scholar 

  80. S. Jeong et al., Opt. Exp. 21, 2263 (2013).

    Article  ADS  Google Scholar 

  81. G. Gaikov et al., Opt. Exp. 25, 29143 (2017).

    Article  ADS  Google Scholar 

  82. I. H. Park et al., Space Sci. Rev. 214, 14, (2018).

    Article  ADS  Google Scholar 

  83. S. Jeong et al., Space Sci. Rev. 214, 16, (2018).

    Article  ADS  Google Scholar 

  84. M. Jelinek et al., Adv. Astron. 2010, 432172 (2010).

    ADS  Google Scholar 

  85. C. Akerlof et al., Nature 398, 400 (1999).

    Article  ADS  Google Scholar 

  86. E. Molinari et al., Astron. Astrophys. 469, 13 (2007).

    Article  Google Scholar 

  87. A. Panaitescu and W. Vestrand, Mon. Not. R. Astron. 387, 497 (2008).

    Article  ADS  Google Scholar 

  88. D. B. Cline et al., Int. J. Astron. Astrophys. 1, 164 (2011).

    Article  Google Scholar 

  89. J. Ellis et al., Astropart. Phys. 25, 402 (2006).

    Article  ADS  Google Scholar 

  90. V. A. Kostelecky and M. Mewes, Astrophys. J. 689, L1 (2008).

    Article  ADS  Google Scholar 

  91. I. H. Park et al., arXiv:0912.0773 (2009).

Download references

Acknowledgments

The authors would like to acknowledge support by National Research Foundation grants of 2018R1A2A1A05022685, 2017K1A4A3015188, and 2018R1D1A1B07048993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, I.H., Jeong, S. A Few Selected Topics in Extreme Astrophysical Phenomena: Gamma-ray Burst as a Source of Multi-messenger Astrophysics and Cosmic Particles as a Would-be Messenger. J. Korean Phys. Soc. 73, 736–746 (2018). https://doi.org/10.3938/jkps.73.736

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.736

Keywords

Navigation