Skip to main content
Log in

PDMS-based Screw-wall Microfluidic Channel Forming a Turbulent Flow at Low Reynold Number

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A mixture of reactants in a PDMS(Polydimethylsiloxane)-based microfluidic channel is a very important factor. A mixture of the fluid in a microfluidic channel is frequently achieved by using some special structure such as grooves or form by inducing a high rate flow that results in a high Reynold number (over 24943 ≫ 2000). However, these methods are accompanied by a complicated procedure like lithography or a special attachment protocol between PDMS and glass. In this study, we introduce a PDMS-based screw-wall microfluidic channel (SMC) as a functionalized channel. The SMC can be developed using a simple protocol and skipping some complicated procedures. Nevertheless, a turbulent flow showing the same mixing performance at low flow rate can be formed. The turbulent flow in the SMC is supported by a computational simulation and is observed by using a mixture of red ink and blue ink under a microscope. Furthermore, its effectiveness for commercial application is confirmed with the synthesis of nanoparticles. The dispersion coefficient (DR) is suggested in a computational simulation and is calculated for three different ratios of the screw thread diameter to the pipe line diameter. This shows that the more effective the mixture by turbulent flow in the SMC is, the nearer to 1 the ratio is. In experiments, a comparison study of a SMC and a plain wall microchannel shows clear differences in the mixtures performance. Finally, nanoparticles are synthesized for 5 different SMCs with pipe line diameters of 120, 170, 200, 500, and 1000 um and a single-peaked distribution for the sizes of the nanoparticles is observed when a 120 um SMC is applied. These results prove that the SMC developed by using our suggesting simple protocol can form a turbulent flow at low flow rate and is good enough to be used as a mixer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. L. Chiang, C. S. Sung, T. F. Wu, C. Y. Chen and C. Y. Hsu, J. Chromatogr B Analyt. Technol. Biomed. Life Sci. 822, 1 (2005).

    Article  Google Scholar 

  2. B. J. Zheng, D. Tice, L. S. Roach and R. F. Ismagilov, Angew Chem. Int. Ed. Engl. 43, 19 (2004).

    Google Scholar 

  3. L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea and A. P. Lee, Lab Chip 6, 2 (2006).

    Article  Google Scholar 

  4. Y. Song, J. Hormes and C. S. Kumar, Small 4, 6 (2008).

    Article  Google Scholar 

  5. K. S. Elvira, X. C. Solvas and R. C. Wootton, Nat. Chem. 5, 11 (2013).

    Article  Google Scholar 

  6. K. Jain, C. Wu, S. V. Atre, G. Jovanovic, V. Narayanan, S. Kimura, V. Sprenkle, N. Canfield and S. Roy, NSTI Nanotech. Technical Proceedings 3, 391 (2007).

    Google Scholar 

  7. X. Z. Lin, A. D. Terepka and H. Yang, Nano Lett. 4, 11 (2004).

    Article  ADS  Google Scholar 

  8. S. Y. Yang, F. Y. Cheng, C. S. Yeh and G. B. Lee, Microfluid Nanofluidics 8, 3 (2010).

    Google Scholar 

  9. V. S. Cabeza, S. Kuhn, A. A. Kulkarni and K. F. Jensen, Langmuir 28, 17 (2012).

    Article  Google Scholar 

  10. I. Shestopalov, J. D. Tice and R. F. Ismagilov, Lab Chip 4, 4 (2004).

    Article  Google Scholar 

  11. J. BurmáKyong and E. Kyuá Lee, Analyst 130, 7 (2005).

    Google Scholar 

  12. L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea and A. P. Lee, Lab Chip 6, 2 (2006).

    Article  Google Scholar 

  13. R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer and O. C. Farokhzad, Nano Lett. 8, 9 (2008).

    Google Scholar 

  14. Q. Zhang, J. J. Xu, Y. Liu and H. Y. Chen, Lab Chip 8, 2 (2008).

    Article  Google Scholar 

  15. S. Marre and K. F. Jensen, Chem. Soc. Rev. 39, 3 (2010).

    Article  Google Scholar 

  16. D. Liu, S. Cito, Y. Zhang, C. F. Wang, T. M. Sikanen and H. A. Santos, Adv. Mater. 27, 14 (2015).

    Google Scholar 

  17. B. Yu, X. Sun, X. Liu, H. Cong, Y. Wang, X. Shu, H. Yuan, D. Wang and J. Tang, Sci. Adv. Mater. 7, 5 (2015).

    Google Scholar 

  18. J. B. You, K. I. Min, B. Lee, D. P. Kim and S. G. Im, Lab Chip 13, 7 (2013).

    Article  Google Scholar 

  19. J. B. You, K. Kang, T. T. Tran, H. Park, W. R. Hwang, J. M. Kim and S. G. Im, Lab Chip 15, 7 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaekwan Lim or Sangyoon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JM., Lim, J., Lee, TR. et al. PDMS-based Screw-wall Microfluidic Channel Forming a Turbulent Flow at Low Reynold Number. J. Korean Phys. Soc. 73, 60–64 (2018). https://doi.org/10.3938/jkps.73.60

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.60

Keywords

Navigation