Skip to main content
Log in

Large Scale Structure in Redshift Space

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger–of–God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non–linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the “one–point” FoG term being independent of the separation vector between two different points, and 2) the “correlated” FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. We introduce the recent progress on understanding this mapping, and the application for the future analysis to reveal the nature of cosmic acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. G. Riess et al., AJL 116, 1009 (1998), astroph/9805201.

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999), astro-ph/9812133.

    Article  ADS  Google Scholar 

  3. D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess and E. Rozo, Physics reports 530, 87 (2013), 1201.2434.

    Article  ADS  MathSciNet  Google Scholar 

  4. L. Amendola, C. Quercellini and E. Giallongo, MNRAS 357, 429 (2005), arXiv:astro-ph/0404599.

    Article  ADS  Google Scholar 

  5. K. Yamamoto, B. A. Bassett and H. Nishioka, Physical Review Letters 94, 051301 (2005), arXiv:astroph/0409207.

    Article  ADS  Google Scholar 

  6. Y. Wang, JCAP 5, 21 (2008), 0710.3885.

    Article  ADS  Google Scholar 

  7. W. J. Percival and M. White, MNRAS 393, 297 (2009), 0808.0003.

    Article  ADS  Google Scholar 

  8. Y-S. Song and W. J. Percival, JCAP 10, 4 (2009), 0807.0810.

    Article  ADS  Google Scholar 

  9. M. White, Y-S. Song and W. J. Percival, MNRAS 397, 1348 (2009), 0810.1518.

    Article  ADS  Google Scholar 

  10. Y-S. Song, Phys. Rev. D 83, 103009 (2011), 1009.2753.

    Article  ADS  Google Scholar 

  11. Y. Wang et al., MNRAS 409, 737 (2010), 1006.3517.

    Article  ADS  Google Scholar 

  12. P. Zhang, M. Liguori, R. Bean and S. Dodelson, Physical Review Letters 99, 141302 (2007), 0704.1932.

    Article  ADS  Google Scholar 

  13. B. Jain and P. Zhang, Phys. Rev. D 78, 063503 (2008), 0709.2375.

    Article  ADS  Google Scholar 

  14. E. V. Linder, Astroparticle Physics 29, 336 (2008), 0709.1113.

    Article  ADS  Google Scholar 

  15. R. Reyes, R. Mandelbaum, U. Seljak, T. Baldauf, J. E. Gunn, L. Lombriser and R. E. Smith, Nature (London) 464, 256 (2010), 1003.2185.

    Article  ADS  Google Scholar 

  16. Y-C. Cai and G. Bernstein, MNRAS 422, 1045 (2012), 1112.4478.

    Article  ADS  Google Scholar 

  17. E. Gazta˜naga, M. Eriksen, M. Crocce, F. J. Castander, P. Fosalba, P. Marti, R. Miquel and A. Cabré, MNRAS 422, 2904 (2012).

    Article  ADS  Google Scholar 

  18. E. Jennings, C. M. Baugh, B. Li, G-B. Zhao and K. Koyama, ArXiv e-prints (2012), 1205.2698.

  19. B. Li, W. A. Hellwing, K. Koyama, G-B. Zhao, E. Jennings and C. M. Baugh, MNRAS 428, 743 (2013), 1206.4317.

    Article  ADS  Google Scholar 

  20. T. Okumura et al., ArXiv e-prints (2015), 1511.08083.

  21. H-J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720 (2003), arXiv:astro-ph/0307460.

    Article  ADS  Google Scholar 

  22. D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005), arXiv:astro-ph/0501171.

    Article  ADS  Google Scholar 

  23. C. Blake et al., MNRAS 418, 1707 (2011), 1108.2635.

    Article  ADS  Google Scholar 

  24. L. Anderson et al., MNRAS 427, 3435 (2012), 1203.6594.

    Article  ADS  Google Scholar 

  25. E. A. Kazin et al., MNRAS 441, 3524 (2014), 1401.0358.

    Article  ADS  Google Scholar 

  26. Y-S. Song, T. Okumura and A. Taruya, Phys. Rev. D 89, 103541 (2014), 1309.1162.

    Article  ADS  Google Scholar 

  27. L. Anderson et al., MNRAS 441, 24 (2014), 1312.4877.

    Article  ADS  Google Scholar 

  28. H. Gil-Marín et al., ArXiv e-prints (2015), 1509.06373.

  29. G-B. Zhao et al., MNRAS 457, 2377 (2016), 1510.08216.

    Article  ADS  Google Scholar 

  30. C. Alcock and B. Paczynski, Nature (London) 281, 358 (1979).

    Article  ADS  Google Scholar 

  31. J. C. Jackson, MNRAS 156, 1P (1972).

    Article  ADS  Google Scholar 

  32. W. L. W. Sargent and E. L. Turner, ApJL 212, L3 (1977).

    Article  ADS  Google Scholar 

  33. P. J. E. Peebles, The large-scale structure of the universe (1980).

  34. N. Kaiser, MNRAS 227, 1 (1987).

    Article  ADS  Google Scholar 

  35. J. A. Peacock and S. J. Dodds, MNRAS 267, 1020 (1994), arXiv:astro-ph/9311057.

    Article  ADS  Google Scholar 

  36. W. E. Ballinger, J. A. Peacock and A. F. Heavens, MNRAS 282, 877 (1996), arXiv:astro-ph/9605017.

    Article  ADS  Google Scholar 

  37. J. A. Peacock et al., Nature (London) 410, 169 (2001), arXiv:astro-ph/0103143.

    Article  ADS  Google Scholar 

  38. M. Tegmark, A. J. S. Hamilton and Y. Xu, MNRAS 335, 887 (2002), arXiv:astro-ph/0111575.

    Article  ADS  Google Scholar 

  39. M. Tegmark et al., Astrophys. J. 606, 702 (2004), arXiv:astro-ph/0310725.

    Article  ADS  Google Scholar 

  40. L. Samushia, W. J. Percival and A. Raccanelli, MNRAS 420, 2102 (2012), 1102.1014.

    Article  ADS  Google Scholar 

  41. L. Guzzo et al., Nature (London) 451, 541 (2008), 0802.1944.

    Article  ADS  Google Scholar 

  42. C. Blake et al., MNRAS 415, 2876 (2011), 1104.2948.

    Article  ADS  Google Scholar 

  43. C. Blake et al., MNRAS 425, 405 (2012), 1204.3674.

    Article  ADS  Google Scholar 

  44. B. A. Reid et al., ArXiv e-prints (2012), 1203.6641.

  45. R. Tojeiro et al., ArXiv e-prints (2012), 1203.6565.

  46. B. A. Reid, H-J. Seo, A. Leauthaud, J. L. Tinker and M. White, MNRAS 444, 476 (2014), 1404.3742.

    Article  ADS  Google Scholar 

  47. Y-S. Song, C. G. Sabiu, T. Okumura, M. Oh and E. V. Linder, JCAP 12, 005 (2014), 1407.2257.

    Article  ADS  Google Scholar 

  48. Y-S. Song, A. Taruya, E. Linder, K. Koyama, C. G. Sabiu, G-B. Zhao, F. Bernardeau, T. Nishimichi and T. Okumura, Phys. Rev. D 92, 043522 (2015), 1507.01592.

    Article  ADS  Google Scholar 

  49. F. Simpson, C. Blake, J. A. Peacock, I. K. Baldry, J. Bland-Hawthorn, A. F. Heavens, C. Heymans, J. Loveday and P. Norberg, Phys. Rev. D 93, 023525 (2016), 1505.03865.

    Article  ADS  Google Scholar 

  50. K. B. Fisher, Astrophys. J. 448, 494 (1995), arXiv:astroph/9412081.

    Article  ADS  Google Scholar 

  51. A. F. Heavens, S. Matarrese, and L. Verde, MNRAS 301, 797 (1998), arXiv:astro-ph/9808016.

    Article  ADS  Google Scholar 

  52. M. White, MNRAS 321, 1 (2001), arXiv:astroph/0005085.

    Article  ADS  Google Scholar 

  53. U. Seljak, MNRAS 325, 1359 (2001), arXiv:astroph/0009016.

    Article  ADS  Google Scholar 

  54. X. Kang, Y. P. Jing, H. J. Mo and G. Börner, MNRAS 336, 892 (2002), arXiv:astro-ph/0201124.

    Article  ADS  Google Scholar 

  55. J. L. Tinker, D. H. Weinberg, and Z. Zheng, MNRAS 368, 85 (2006), arXiv:astro-ph/0501029.

    Article  ADS  Google Scholar 

  56. J. L. Tinker, MNRAS 374, 477 (2007), arXiv:astroph/0604217.

    Article  ADS  Google Scholar 

  57. R. Scoccimarro, Phys. Rev. D 70, 083007 (2004), arXiv:astro-ph/0407214.

    Article  ADS  Google Scholar 

  58. T. Matsubara, Phys. Rev. D 77, 063530 (2008), 0711.2521.

    Article  ADS  Google Scholar 

  59. T. Matsubara, Phys. Rev. D 78, 083519 (2008), 0807.1733.

    Article  ADS  Google Scholar 

  60. V. Desjacques and R. K. Sheth, Phys. Rev. D 81, 023526 (2010), 0909.4544.

    Article  ADS  Google Scholar 

  61. A. Taruya, T. Nishimichi and S. Saito, Phys. Rev. D 82, 063522 (2010), 1006.0699.

    Article  ADS  Google Scholar 

  62. A. Taruya, T. Nishimichi and F. Bernardeau, Phys. Rev. D 87, 083509 (2013), 1301.3624.

    Article  ADS  Google Scholar 

  63. T. Matsubara, Phys. Rev. D 83, 083518 (2011), 1102.4619.

    Article  ADS  Google Scholar 

  64. T. Okumura and Y. P. Jing, Astrophys. J. 726, 5 (2011), 1004.3548.

    Article  ADS  Google Scholar 

  65. T. Okamura, A. Taruya and T. Matsubara, JCAP 8, 12 (2011), 1105.1491.

    Article  ADS  Google Scholar 

  66. M. Sato and T. Matsubara, Phys. Rev. D 84, 043501 (2011), 1105.5007.

    Article  ADS  Google Scholar 

  67. E. Jennings, C. M. Baugh and S. Pascoli, MNRAS 410, 2081 (2011), 1003.4282.

    ADS  Google Scholar 

  68. B. A. Reid and M. White, MNRAS 417, 1913 (2011), 1105.4165.

    Article  ADS  Google Scholar 

  69. U. Seljak and P. McDonald, JCAP 11, 39 (2011), 1109.1888.

    Article  ADS  Google Scholar 

  70. T. Okumura, U. Seljak, P. McDonald and V. Desjacques, JCAP 2, 10 (2012), 1109.1609.

    Article  ADS  Google Scholar 

  71. T. Okumura, U. Seljak and V. Desjacques, JCAP 11, 014 (2012), 1206.4070.

    Article  ADS  Google Scholar 

  72. J. Kwan, G. F. Lewis and E. V. Linder, Astrophys. J. 748, 78 (2012), 1105.1194.

    Article  ADS  Google Scholar 

  73. P. Zhang, J. Pan and Y. Zheng, Phys. Rev. D 87, 063526 (2013), 1207.2722.

    Article  ADS  Google Scholar 

  74. Y. Zheng, P. Zhang, Y. Jing, W. Lin and J. Pan, Phys. Rev. D 88, 103510 (2013), 1308.0886.

    Article  ADS  Google Scholar 

  75. T. Ishikawa, T. Totani, T. Nishimichi, R. Takahashi, N. Yoshida and M. Tonegawa, MNRAS 443, 3359 (2014), 1308.6087.

    Article  ADS  Google Scholar 

  76. M. White, B. Reid, C-H. Chuang, J. L. Tinker, C. K. McBride, F. Prada and L. Samushia, MNRAS 447, 234 (2015), 1408.5435.

    Article  ADS  Google Scholar 

  77. E. Jennings, R. H. Wechsler, S. W. Skillman and M. S. Warren, MNRAS 457, 1076 (2016), 1508.01803.

    Article  ADS  Google Scholar 

  78. D. Bianchi, M. Chiesa and L. Guzzo, MNRAS 446, 75 (2015), 1407.4753.

    Article  ADS  Google Scholar 

  79. D. Bianchi, W. Percival and J. Bel, ArXiv e-prints (2016), 1602.02780.

  80. E. Jennings, C. M. Baugh and S. Pascoli, ApJL 727, L9 (2011), 1011.2842.

    Article  ADS  Google Scholar 

  81. D. Bianchi, L. Guzzo, E. Branchini, E. Majerotto, S. de la Torre, F. Marulli, L. Moscardini and R. E. Angulo, MNRAS 427, 2420 (2012), 1203.1545.

    Article  ADS  Google Scholar 

  82. S. de la Torre and L. Guzzo, ArXiv e-prints (2012), 1202.5559.

  83. A. Taruya and T. Hiramatsu, Astrophys. J. 674, 617 (2008), 0708.1367.

    Article  ADS  Google Scholar 

  84. V. Springel, MNRAS 364, 1105 (2005), arXiv:astroph/0505010.

    Article  ADS  Google Scholar 

  85. M. Levi et al., ArXiv e-prints (2013), 1308.0847.

  86. Planck Collaboration, P. A. R. Ade et al., ArXiv e-prints (2015), 1502.01589.

  87. M. Crocce, S. Pueblas and R. Scoccimarro, MNRAS 373, 369 (2006), astro-ph/0606505.

    Article  ADS  Google Scholar 

  88. A. Taruya, F. Bernardeau, T. Nishimichi and S. Codis, Phys. Rev. D 86, 103528 (2012), 1208.1191.

    Article  ADS  Google Scholar 

  89. Y. P. Jing, Astrophys. J. 620, 559 (2005), arXiv:astroph/0409240.

    Article  ADS  Google Scholar 

  90. P. Zhang, Y. Zheng and Y. Jing, Phys. Rev. D 91, 043522 (2015), 1405.7125.

    Article  ADS  Google Scholar 

  91. Y. Zheng, P. Zhang and Y. Jing, Phys. Rev. D 91, 043523 (2015), 1409.6809.

    Article  ADS  Google Scholar 

  92. Y. Zheng and Y-S. Song, JCAP 8, 050 (2016), 1603.00101.

    Article  ADS  Google Scholar 

  93. Y-S. Song, Y. Zheng, A. Taruya and M. Oh, JCAP (submitted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Seon Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YS. Large Scale Structure in Redshift Space. J. Korean Phys. Soc. 73, 504–515 (2018). https://doi.org/10.3938/jkps.73.504

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.504

Keywords

Navigation