Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 4, pp 488–503 | Cite as

Dynamics and Kinetics of Polymers and Biopolymers

  • Nam-Kyung LeeEmail author
Review Articles
  • 105 Downloads
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

In this review we present current theoretical understandings on dynamics of a single polymer chain and kinetics of conformational changes. The emphasis has been put on the influence of stiffness, topological interactions and confinement effects. We provide an overview of theoretical considerations based on general models. The basic scaling laws governing the free dynamics and confined dynamics of single polymers are given. For semiflexible chains, the interplay between connectivity and internal elastic properties produces a rich dynamic behavior. In the entangled regime, the reptation dynamics of semiflexible chains are characterized by several dynamic exponents which differ from the exponents of flexible polymers, reflecting their local stiffness. We discuss the influence of confinement on entanglement length, which is directly linked to the unique viscoelastic property of polymer melts. The theories for biologically relevant processes, translocation dynamics and cyclization kinetics are discussed. We expect the general polymer theory to help further development of a consistent microscopic theory for diverse biological processes.

Keywords

Suggested keywords 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Jackson, Molecular and Cellular Biophysics (Cambridge University Press, 2006).Google Scholar
  2. [2]
    D. Nelson, T. Piran and S. Weinberg, eds., Statistical Mechanics Of Membranes And Surfaces, 2nd ed (World Scientific Publishing, 2004).Google Scholar
  3. [3]
    B. Wang, J. Kuo, S. C. Bae and S. Granick, Nature materials 11, 481 (2012).ADSGoogle Scholar
  4. [4]
    T. T. Perkins, D. E. Smith and S. Chu, Science 264, 819 (1994).ADSGoogle Scholar
  5. [5]
    J. Käs, H. Strey and E. Sackmann, Nature 368, 226 (1994).ADSGoogle Scholar
  6. [6]
    K. Berland, P. T. C. So and E. Gratton, Biophys. J. 68, 694 (1995).ADSGoogle Scholar
  7. [7]
    A. Nikoubashman, A. Milchev and K. Binder, J. Chem. Phys. 145, 234903 (2016).ADSGoogle Scholar
  8. [8]
    R. Everaers, F. Jülicher, A. Ajdari and A. Maggs, Phys. Rev. Lett. 82, 3717 (1999).ADSGoogle Scholar
  9. [9]
    G. Nam, A. Johner and N-K. Lee, Eur. Phys. J. E 32, 119 (2010).Google Scholar
  10. [10]
    G. Nam, A. Johner and N-K. Lee, J. Chem. Phys. 133, 044908 (2010).ADSGoogle Scholar
  11. [11]
    N. Fakhri, F. C. MacKintosh, B. Lounis, L. Cognet and M. Pasquali, Science 330, 1804 (2010).ADSGoogle Scholar
  12. [12]
    T. Eisenstecken, G. Gompper and R. Winkler, J. Chem. Phys. 146, 154903 (2017).ADSGoogle Scholar
  13. [13]
    A. C. R. Metzler and J-H. Jeon, Biochimica et Biophysica Acta 1858, 2451 (2016).Google Scholar
  14. [14]
    N-K. Lee, C. Abrams and A. Johner, EPL 72, 922 (2005).ADSGoogle Scholar
  15. [15]
    W. Sung and P. Park, Phys. Rev. Lett. 77, 783 (1996).ADSGoogle Scholar
  16. [16]
    J. Liphardt, S. Dumont, S. B. Smith, I. T. Jr. and C. Bustamante, Science 296, 1832 (2002).ADSGoogle Scholar
  17. [17]
    D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. T. Jr and C. Bustamante, Nature 437, 231 (2005).ADSGoogle Scholar
  18. [18]
    H. Katkar and M. Muthukumar, J. Chem. Phys. 148, 024903 (2018).ADSGoogle Scholar
  19. [19]
    Y. Kim, M-K. Chae, N-K. L. J. Jung and A. Johner, Macromolecules 16, 6285 (2017).ADSGoogle Scholar
  20. [20]
    L. C-L. Lin, N. Gov and F. L. H. Brown, J. Chem. Phys. 124, 074903 (2006).ADSGoogle Scholar
  21. [21]
    J. Tang, S. L. Levy, D. W. Trahan, J. J. Jones, H. G. Craighead and P. S. Doyle, Macromolecules 43, 7368 (2010).ADSGoogle Scholar
  22. [22]
    G. Ando, C. Hyun, J. Li and T. Mitsui, ACS Nano 6, 10090 (2012).Google Scholar
  23. [23]
    P. G. de Gennes, J. Chem. Phys. 55, 572 (1971).ADSGoogle Scholar
  24. [24]
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1988).Google Scholar
  25. [25]
    M. Rubinstein and R. H. Colby, Polymer Physics (OUP, Oxford, 2003).Google Scholar
  26. [26]
    R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian and K. Kremer, Science 303, 823 (2004).ADSGoogle Scholar
  27. [27]
    C. Tzoumanekas and D. N. Theodorou, Macromolecules 39, 4592 (2006).ADSGoogle Scholar
  28. [28]
    T. Vettorel, A. Y. Grosberg and K. Kremer, Phys. Biol. 6, 025013 (2009).ADSGoogle Scholar
  29. [29]
    R. S. Hoy, K. Foteinopoulou and M. Kröger, Phys. Rev. E 80, 031803 (2009).ADSGoogle Scholar
  30. [30]
    M. Muthukumar, Advances in Chemical Physics 149, 129 (2012).Google Scholar
  31. [31]
    C. Micheletti, D. Marenduzzo and E. Orlandini, Physics Reports 504, 1 (2011).ADSMathSciNetGoogle Scholar
  32. [32]
    A. Leforestier, A. Šiber, F. Livolant and R. Podgornik, Biophys. J. 100, 2209 (2011).ADSGoogle Scholar
  33. [33]
    W. Reisner, J. N. Pedersen and R. H. Austin, Reports on Progress in Physics 75, 106601 (2012).ADSGoogle Scholar
  34. [34]
    D. Marenduzzo et al., Proc. Natl. Acad. Sci. USA 110, 20081 (2013).ADSGoogle Scholar
  35. [35]
    J. Gao, P. Tang, Y. Yang and J. Z. Chen, Soft matter 10, 4674 (2014).ADSGoogle Scholar
  36. [36]
    A. Cherstvy, Biopolymers 97, 311 (2012).Google Scholar
  37. [37]
    T. Sakaue, Macromolecules 40, 5206 (2007).ADSGoogle Scholar
  38. [38]
    P. Bhattacharyya, R. Sharma and B. J. Cherayil, J. Chem. Phys. 136, 234903 (2012).ADSGoogle Scholar
  39. [39]
    D. M. Sussman, W-S. Tung, K. I. Winey, K. S. Schweizer and R. A. Riggleman, Macromolecules 47, 6462 (2014).ADSGoogle Scholar
  40. [40]
    D. M. Sussman and K. S. Schweizer, Phys. Rev. Lett. 109, 168306 (2012).ADSGoogle Scholar
  41. [41]
    N-K. Lee, D. Diddens, H. Meyer and A. Johner, Phys. Rev. Lett. 118, 067802 (2017).ADSGoogle Scholar
  42. [42]
    C. Abrams, N-K. Lee and A. Johner, Macromolecules 39, 3655 (2006).ADSGoogle Scholar
  43. [43]
    N. S. Gov and S. A. Safran, Biophys J. 88, 1859 (2005).Google Scholar
  44. [44]
    P. Girard, J. Prost and P. Bassereau, Phys. Rev. Lett. 94, 088102 (2005).ADSGoogle Scholar
  45. [45]
    A. Milchev, Journal of Physics: Condensed Matter 23, 103101 (2011).ADSGoogle Scholar
  46. [46]
    V. Yamakov and A. Milchev, Phys. Rev. E 55, 1704 (1997).ADSGoogle Scholar
  47. [47]
    T. Kreer, J. Baschnagel, M. Müller and K. Binder, Macromolecules 34, 1105 (2001).ADSGoogle Scholar
  48. [48]
    W. Paul, K. Binder, D. W. Heermann and K. Kremer, J. Chem. Phys. 95, 7726 (1991).ADSGoogle Scholar
  49. [49]
    K. Kremer and G. S. Grest, J. of the Chemical Society, Faraday Transactions 88, 1707 (1992).Google Scholar
  50. [50]
    D. C. J. Glaser, K. Kroy, I. Lauter, M. Degawa, N. Kirchgener, B. H. mann, R. Merkel and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010).ADSGoogle Scholar
  51. [51]
    B. Hinner, M. Tempel, E. Sackmann, K. Kroy and E. Frey, Phys. Rev. Lett. 81, 2614 (1998).ADSGoogle Scholar
  52. [52]
    E. Sackmann, J. Kas and H. Strey, Adv. Mat. 6, 507 (1994).Google Scholar
  53. [53]
    M. R. H. Hinsch, N. Kirchgener, M. Giesen, M. Degawa, B. H. mann E. Frey and R. Merkel, Europhys. Lett. 86, 26003 (2009).ADSGoogle Scholar
  54. [54]
    A. E. Likhtman and T. C. McLeish, Macromolecules 35, 6332 (2002).ADSGoogle Scholar
  55. [55]
    S. T. Milner and T. C. B. McLeish, Phys. Rev. Lett. 81, 725 (1998).ADSGoogle Scholar
  56. [56]
    A. N. Semenov and M. Rubinstein, Eur. Phys. J. B. 1, 1998 (1998).Google Scholar
  57. [57]
    D. A. Fletcher and R. D. Mullins, Nature 463, 485 (2010).ADSGoogle Scholar
  58. [58]
    J. Baschnagel, H. Meyer, J. Wittmer, I. Kulic, H. Mohrbach, F. Ziebert, G-M. Nam, N-K. Lee and A. Johner, polymers 8, 286 (2016).Google Scholar
  59. [59]
    R. Granek, Journal de Physique II 7, 1761 (1997).ADSGoogle Scholar
  60. [60]
    L. Harnau and P. Reineker, Phys. Rev. E 60, 4671 (1999).ADSGoogle Scholar
  61. [61]
    R. Winkler, J. Chem. Phys. 133, 164905 (2010).ADSGoogle Scholar
  62. [62]
    E. Farge and A. C. Maggs, Macromolecules 26, 5041 (1993).ADSGoogle Scholar
  63. [63]
    N-K. Lee and D. Thirumalai, Biophys. J. 86, 2641 (2004).ADSGoogle Scholar
  64. [64]
    O. Hallatschek, E. Frey and K. Kroy, Phys. Rev. E 75, 031905 (2007).ADSMathSciNetGoogle Scholar
  65. [65]
    B. Obermayer, O. Hallatschek, E. Frey and K. Kroy, The European Physical Journal E: Soft Matter and Biological Physics 23, 375 (2007).ADSGoogle Scholar
  66. [66]
    D. C. Morse, Phys. Rev. E 58, R1237 (1998).ADSGoogle Scholar
  67. [67]
    D. Morse, Macromolecules 31, 7030 (1998).ADSGoogle Scholar
  68. [68]
    A. Cavallo, M. Müller, J. Wittmer, A. Johner and K. Binder, Journal of Physics: Condensed Matter 17, S1697 (2005).ADSGoogle Scholar
  69. [69]
    S. Ramanathan and D. Morse, Phys. Rev. E 76, 010501 (2007).ADSGoogle Scholar
  70. [70]
    T. Odijk, Phys. Rev. E 77, 060901 (2008).ADSGoogle Scholar
  71. [71]
    M. Choi, C. Santangelo, O. Pelletier, J. Kim, S. Kwon, Z. Wen, Y. Li, P. Pincus, C. Safinya and M. Kim, Macromolecules 38, 9882 (2005).ADSGoogle Scholar
  72. [72]
    Y-L. Chen, M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta and P. S. Doyle, Phys. Rev. E 70, 060901 (2004).ADSGoogle Scholar
  73. [73]
    D. J. Bonthuis, C. Meyer, D. Stein and C. Dekker, Phys. Rev. Lett. 101, 108303 (2008).ADSGoogle Scholar
  74. [74]
    D. R. Tree, Y. Wang and K. D. Dorfman, Phys. Rev. Lett. 108, 228105 (2012).ADSGoogle Scholar
  75. [75]
    T. B. Liverpool, Phys. Rev. E 72, 021805 (2005).ADSMathSciNetGoogle Scholar
  76. [76]
    M. Wang, A. E. Likhtman and B. Olsen, J. Chem. Phys. 143, 184904 (2015).ADSGoogle Scholar
  77. [77]
    P. Lang and E. Frey, Nat. Comm. 9, 494 (2018).ADSGoogle Scholar
  78. [78]
    N. Gov, Phys. Rev. Lett. 93, 268104 (2004).ADSGoogle Scholar
  79. [79]
    M. Bloom, E. Evans and O. Mouritsen, Quart. Rev. Biophys. 24, 293 (1991).Google Scholar
  80. [80]
    D. R. Nelson and L. Peliti, J. de Physique 48, 1085 (1987).Google Scholar
  81. [81]
    K. R. Mecke, T. Charitat and F. Graner, Langmuir 19, 2080 (2003).Google Scholar
  82. [82]
    W. Helfrich, Zeitschrift für Naturforschung A 33, 305 (1978).ADSGoogle Scholar
  83. [83]
    J-M. Park, Phys. Rev. E 54, 5414 (1996).ADSGoogle Scholar
  84. [84]
    J-M. Park, Phys. Rev. E 56, R47 (1997).ADSGoogle Scholar
  85. [85]
    Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh and M. S. Feld, Proc. Natl. Acad. Sci. USA 107, 1289 (2010).ADSGoogle Scholar
  86. [86]
    I. Koltover, J. O. Rädler and C. Safinya, Phys. Rev. Lett. 82, 1991 (1999).ADSGoogle Scholar
  87. [87]
    J. Elliott, D. Needham, J. Dilger and D. Haydon, Biochimica et Biophysica Acta 735, 95 (1983).Google Scholar
  88. [88]
    A. Botelho, T. Huber, T. Sakmar and M. Brown, Biophys. J. 91, 4464 (2006).ADSGoogle Scholar
  89. [89]
    B. Antonny, Curr. Opin. Cell. Biol. 18, 386 (2006).Google Scholar
  90. [90]
    E. Lindahl and O. Edholm, Biophys. J. 79, 426 (2000).ADSGoogle Scholar
  91. [91]
    M. Deserno, K. Kremer, H. Paulsen, C. Peter and F. Schmid, From Single Molecules to Nanoscopically Structured Materials (Springer, 2013), chap. Computational studies of biomembrane systems: Theoretical considerations, simulation models, and applications, p. 237.Google Scholar
  92. [92]
    Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld and S. Suresh, Proc. Natl. Acad. Sci. USA 105, 13730 (2008).ADSGoogle Scholar
  93. [93]
    P. Tarazona, E. Chacon and F. Bresme, J. Chem. Phys. 139, 094902 (2013).ADSGoogle Scholar
  94. [94]
    A. Boulbitch, Z. Guttenberg and E. Sackmann, Biophys. J. 81, 2732 (2001).Google Scholar
  95. [95]
    T. McLeish, Advances in physics 51, 1379 (2002).ADSGoogle Scholar
  96. [96]
    R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian and K. Kremer, Science 303, 823 (2004).ADSGoogle Scholar
  97. [97]
    H. Meyer, T. Kreer, A. Cavallo, J. P. Wittmer and J. Baschnagel, Eur. Phys. J. -Spec. Top. 141, 167 (2007).Google Scholar
  98. [98]
    S. Edwards, Br. Polym. J. 9, 140 (1977).Google Scholar
  99. [99]
    D. Read, K. Jagannathan and A. Likhtman, Macromolecules 41, 6843 (2008).ADSGoogle Scholar
  100. [100]
    W. Bisbee, J. Qin and S. Milner, Macromolecules 44, 8972 (2011).ADSGoogle Scholar
  101. [101]
    T. Ge, S. Panyukov and M. Rubinstein, Macromolecules 49, 708 (2016).ADSGoogle Scholar
  102. [102]
    R. Auhl, R. Everaers, G. S. Grest, K. Kremer and S. J. Plimpton, J. Chem. Phys. 119, 12718 (2003).ADSGoogle Scholar
  103. [103]
    M. Kröger, Computer physics communications 168, 209 (2005).ADSGoogle Scholar
  104. [104]
    Y. Lin, Macromolecules 20, 3080 (1987).ADSGoogle Scholar
  105. [105]
    T. A. Kavassalis and J. Noolandi, Phys. Rev. Lett. 59, 2674 (1987).ADSGoogle Scholar
  106. [106]
    R. Colby and M. Rubinstein, Macromolecules 23, 2753 (1990).ADSGoogle Scholar
  107. [107]
    L. Fetters, D. Lohse, D. Richter, T. Witten and A. Zirkel, Macromolecules 27, 4639 (1994).ADSGoogle Scholar
  108. [108]
    S. Milner, Macromolecules 38, 4929 (2005).ADSGoogle Scholar
  109. [109]
    R. Everaers, Phys. Rev. E 86, 022801 (2012).ADSGoogle Scholar
  110. [110]
    N. Uchida, G. S. Grest and R. Everaers, J. Chem. Phys. 128, 044902 (2008).ADSGoogle Scholar
  111. [111]
    A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302 (2014).ADSGoogle Scholar
  112. [112]
    H. Meyer, T. Kreer, A. Cavallo, J. Wittmer and J. Baschnagel, Eur. Phys. J. Special Topics 141, 167 (2007).Google Scholar
  113. [113]
    A. Semenov and A. Johner, Eur. Phys. J. E 12, 469 (2003).Google Scholar
  114. [114]
    A. Johner, F. Thalmann, J. Baschnagel, H. Meyer, S. Obukhov and J. Wittmer, Journal of Statistical Mechanics: Theory and Experiment 2014, P04024 (2014).Google Scholar
  115. [115]
    H. Meyer, J. P. Wittmer, T. Kreer, A. Johner and J. Baschnagel, J. Chem. Phys. 132, 184904 (2010).ADSGoogle Scholar
  116. [116]
    A. Galuschko, M. Lang, T. Kreer and J-U. Sommer, Soft Materials 12, S49 (2014).Google Scholar
  117. [117]
    N-K. Lee, C. Abrams, A. Johner and S. Obukhov, Phys. Rev. Lett. 90, 225504 (2003).ADSGoogle Scholar
  118. [118]
    N-K. Lee, C. Abrams, A. Johner and S. Obukhov, Macromolecules 37, 651 (2004).ADSGoogle Scholar
  119. [119]
    D. Diddens, N-K. Lee, S. Obukhov, J. Baschnagel and A. Johner, Macro Lett. 5, 740 (2016).Google Scholar
  120. [120]
    V. V. Palyulin, T. Ala-Nissilab and R. Metzler, Soft Matter 10 (2014).Google Scholar
  121. [121]
    M. Muthukumar, Polymer translocation (CRC press, 2016).Google Scholar
  122. [122]
    B. Duplantier, Journal of Statistical Physics 54, 581 (1989).ADSMathSciNetGoogle Scholar
  123. [123]
    A. Gopinathan and Y-W. Kim, Phys. Rev. Lett. 99, 228106 (2007).ADSGoogle Scholar
  124. [124]
    M. Muthukumar, J. Chem. Phys. 111, 10371 (1999).ADSGoogle Scholar
  125. [125]
    P. Park and W. Sung, J. Chem. Phys. 108, 3013 (1998).ADSGoogle Scholar
  126. [126]
    N-K. Lee and S. Obukhov, J. Phys. II 6, 195 (1996).Google Scholar
  127. [127]
    V. Palyulin, T. Ala-Nissilab and R. Metzler, Soft Matter 10, 9016 (2014).ADSGoogle Scholar
  128. [128]
    K. Luo, S. T. T. Ollila, I. Huopaniemi, T. Ala-Nissila, P. Pomorski, M. Karttunen, S-C. Ying and A. Bhattacharya, Phys. Rev. E 78, 050901 (2008).ADSGoogle Scholar
  129. [129]
    V. V. Lehtola, R. P. Linna and K. Kaski, Phys. Rev. E 81, 031803 (2010).ADSGoogle Scholar
  130. [130]
    Y. Kantor and M. Kardar, Phys. Rev. E 69, 021806 (2004).ADSGoogle Scholar
  131. [131]
    J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and T. A. Vilgis, EPL 79, 18002 (2007).ADSGoogle Scholar
  132. [132]
    R. Metzler and J. Klafter, Physics Reports 339, 1 (2000).ADSGoogle Scholar
  133. [133]
    R. Metzler and J. Klafter, Biophys. J. 85, 2776 (2003).ADSGoogle Scholar
  134. [134]
    K. Luo, T. Ala-Nissila, S-C. Ying and R. Metzler, EPL 88, 68006 (2010).ADSGoogle Scholar
  135. [135]
    A. Johner and J-F. Joanny, Eur. Phys. J. E 41, 78 (2018), https://doi.org/10.1140/epje/i2018-11686-7. Google Scholar
  136. [136]
    T. Sakaue, Phys. Rev. E 81, 041808 (2010).ADSGoogle Scholar
  137. [137]
    T. Sakaue, Phys. Rev. E 76, 021803 (2007).ADSGoogle Scholar
  138. [138]
    T. Saito and T. Sakaue, Eur. Phys. J. E 34, 135 (2011).Google Scholar
  139. [139]
    P. Rowghanian and A. Y. Grosberg, Phys. Rev. E 86, 011803 (2012).ADSGoogle Scholar
  140. [140]
    P. Rowghanian and A. Y. Grosberg, J. Phys. Chem. B 115, 14127 (2011).Google Scholar
  141. [141]
    D. Panja and G. Barkema, Biophys. J. 94, 1630 (2008).ADSGoogle Scholar
  142. [142]
    M. Karplus and D. Weaver, Protein Sci. 3, 650 (1994).Google Scholar
  143. [143]
    C. Hyeon and D. Thirumalai, J. Chem. Phys. 124, 104905 (2006).ADSGoogle Scholar
  144. [144]
    D. Thirumalai, N. Lee, S. Woodson and D. Klimov, Annu. Rev. Phys. Chem. 52, 751 (2001).ADSGoogle Scholar
  145. [145]
    J. Shin, A. G. Cherstvy and R. Metzler, Soft matter 11, 472 (2015).ADSGoogle Scholar
  146. [146]
    T. E. Cloutier and J. Widom, Proc. Natl. Acad. Sci. USA 102, 3645 (2005).ADSGoogle Scholar
  147. [147]
    G. Wilemski and M. Fixman, J. Chem. Phys. 60, 866 (1974).ADSGoogle Scholar
  148. [148]
    B. Friedman and B. O’Shaughnessy, Phys. Rev. A 40, 5950 (1989).ADSGoogle Scholar
  149. [149]
    A. Szabo, K. Schulten and Z. Schulten, J. Chem. Phys. 72, 4350 (1980).ADSGoogle Scholar
  150. [150]
    Q. Du, C. Smith, N. Shiffeldrim, M. Vologodskaia and A. Vologodskii, Proc. Natl. Acad. Sci. USA 102, 5397 (2005).ADSGoogle Scholar
  151. [151]
    I-B. Lee, S-C. Hong, N-K. Lee and A. Johner, Proc. Natl. Acad. Sci. USA 103, 2492 (2012).Google Scholar
  152. [152]
    B. O’Shaughnessy and D. Vavylonis, Phys. Rev. Lett. 90, 056103 (2003).ADSGoogle Scholar
  153. [153]
    B. Friedman and B. O’Shaughnessy, Macromolecules 26, 5726 (1993).ADSGoogle Scholar
  154. [154]
    B. Friedman and B. O’Shaughnessy, EPL 23, 667 (1993).ADSGoogle Scholar
  155. [155]
    M. Doi, Chem. Phys. 9, 455 (1975).Google Scholar
  156. [156]
    H-P. Hsu, W. Nadler and P. Grassberger, Macromolecules 37, 4658 (2004).ADSGoogle Scholar
  157. [157]
    J. Des Cloizeaux, Phys. Rev. A 10, 1665 (1974).ADSGoogle Scholar
  158. [158]
    J. Des Cloizeaux and G. Jannink, Polymers in solution: their modelling and structure (OUP Oxford, 2010).Google Scholar
  159. [159]
    N. M. Toan, G. Morrison, C. Hyeon and D. Thirumalai, J. Phys. Chem. B 112, 6094 (2008).Google Scholar
  160. [160]
    H. Hsu, W. Nadler and P. Grassberger, Macromolecules 37, 4658 (2004).ADSGoogle Scholar
  161. [161]
    N. Levernier, M. Dolgushev, O. Bénichou, A. Blumen, T. Guérin and R. Voituriez, J. Chem. Phys. 143, 204108 (2015).ADSGoogle Scholar
  162. [162]
    C. Jeon, Y. Jung and B-Y. Ha, Soft matter 12, 9436 (2016).ADSGoogle Scholar
  163. [163]
    M. Weiss, in International review of cell and molecular biology (Elsevier, 2014), vol. 307, p. 383.Google Scholar
  164. [164]
    H. Kang, N. M. Toan, C. Hyeon and D. Thirumalai, Journal of the American Chemical Society 137, 10970 (2015).Google Scholar
  165. [165]
    R. Hancock and K. W. Jeon, eds., International Review of Cell and Molecular Biology (ScienceDirect, 2014), vol. 307.Google Scholar
  166. [166]
    T. Guérin, O. Bénichou and R. Voituriez, Nature chemistry 4, 568 (2012).ADSGoogle Scholar
  167. [167]
    S. Jun, J. Bechhoefer and B-Y. Ha, EPL 64, 420 (2003).ADSGoogle Scholar
  168. [168]
    A. Dua and B. J. Cherayil, J. Chem. Phys. 116, 399 (2002).ADSGoogle Scholar
  169. [169]
    J. Kosuka, H. Yokota, Y. Arai, Y. Ishii and T. Yanagida, Nat. Chem. Biol. 2, 83 (2006).Google Scholar
  170. [170]
    G. Nam, N-K. Lee, H. Mohrbach, A. Johner and I. M. Kulic, EPL 100, 28001 (2012).ADSGoogle Scholar
  171. [171]
    M-K. Chae, Y. Kim, A. Johner and N-K. Lee, Soft Matter 14, 2346 (2018).ADSGoogle Scholar
  172. [172]
    J. Shin and W. Sung, J. Chem. Phys. 136, 01B611 (2012).Google Scholar
  173. [173]
    M. Lee, S. H. Kim and S-C. Hong, Proc. Natl. Acad. Sci. USA 107, 4985 (2010).ADSGoogle Scholar
  174. [174]
    S. H. Kim, S-H. Lim, A-R. Lee, D. H. Kwon, H. K. Song, J-H. Lee, M. Cho, A. Johner, N-K. Lee and S-C. Hong, Nucl. Aci. Res. 46, 4129 (2018).Google Scholar
  175. [175]
    J. Lee, I-H. Lee, I. Joung, J. Lee and B. R. Brooks, Nat. Comm. 8, 15443 (2017).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsSejong UniversitySeoulKorea

Personalised recommendations