Journal of the Korean Physical Society

, Volume 73, Issue 4, pp 479–487 | Cite as

Miniaturization and Integration of Organic Resistive Memory Devices

  • Younggul Song
  • Daekyoung Yoo
  • Takhee LeeEmail author
Review Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews


Recently, organic resistive memory devices have attracted great interest because they can be fabricated to low cost, flexible, and printable memory cells. Here, we reviewed recent advances of miniaturization and integration of organic resistive memory devices. We introduced research background of fabrication of organic resistive memory devices. Then we arranged achievements on miniaturization and integration of organic resistive memory devices in chronological order. Finally, we summarized research outlook of miniaturization and integration of organic resistive memory devices.


Organic Electronics Organic memory Device architecture Device miniaturization Device integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).CrossRefADSGoogle Scholar
  2. [2]
    J. D. Boeck, W. V. Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein and G. Borghs, Semicond. Sci, Technol. 17, 342 (2002).CrossRefADSGoogle Scholar
  3. [3]
    S. Hudgens and B. Johnson, MRS Bull. 29, 829 (2004).CrossRefGoogle Scholar
  4. [4]
    R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).CrossRefADSGoogle Scholar
  5. [5]
    S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi and M. DeHerren, IEEE Trans. Magn. 35, 2814 (1999).CrossRefADSGoogle Scholar
  6. [6]
    L. P. Ma, J. Liu and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002).CrossRefADSGoogle Scholar
  7. [7]
    J. Ouyang, C-W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Adv. Mater. 3, 918 (2004).Google Scholar
  8. [8]
    C. W. Chu, J. Ouyang, J. H. Tseng and Y. Yang, Adv. Mater. 17, 1440 (2005).CrossRefGoogle Scholar
  9. [9]
    R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner and Y. Yang, Nano Lett. 5, 1077 (2005).CrossRefADSGoogle Scholar
  10. [10]
    R. J. Tseng, C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan and Y. Yang, Nat. Nanotechnol. 1, 72 (2006).CrossRefADSGoogle Scholar
  11. [11]
    Y. Yang, J. Ouyang, L. Ma, R. J. H. Tseng and C. W. Chu, Adv. Funct. Mat. 16, 1001 (2006).CrossRefGoogle Scholar
  12. [12]
    B. Cho, S. Song, Y. Ji, T-W. Kim and T. Lee, Adv. Funct. Mat. 12, 2806 (2011).CrossRefGoogle Scholar
  13. [13]
    A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, M. E. Roberts, Y. Yang, F. Wudl and Z. Bao, Nature 444, 913 (2006).CrossRefADSGoogle Scholar
  14. [14]
    J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti and A. Salleo, Nat. Mater. 8, 952 (2009).CrossRefADSGoogle Scholar
  15. [15]
    Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulous, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J-L. Brédas, S. R. Marder, A. Kahn and B. Kippelen, Science 336, 327 (2012).CrossRefADSGoogle Scholar
  16. [16]
    W. L. Kwan, R. J. Tseng, W. Wu, Q. Pei and Y. Yang, IEDM Technical Digest (2007), p. 237.Google Scholar
  17. [17]
    T-W. Kim, H. Choi, S-H. Oh, M. Jo, G. Wang, B. Cho, D-Y. Kim, H. Hwang and T. Lee, Nanotechnol. 20, 025201 (2009).CrossRefADSGoogle Scholar
  18. [18]
    S. H. Oh, S. I. Na, Y. C. Nah, D. Vak, S. S. Kim and D. Y. Kim, Org. Electron. 8, 773 (2007).CrossRefGoogle Scholar
  19. [19]
    C. Kim, P. E. Burrows and S. R. Forrest, Science 288, 831 (2000).CrossRefADSGoogle Scholar
  20. [20]
    C. Kim C, M. Shtein and S. R. Forrest, Appl. Phys. Lett. 8, 4051 (2002).CrossRefADSGoogle Scholar
  21. [21]
    W. M. Lackowski, P. Ghosh and R. M. Crooks. J. Am. Chem. Soc. 121, 1419 (1999).CrossRefGoogle Scholar
  22. [22]
    Y. L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, J. Am. Chem Soc. 124, 7654 (2002).CrossRefGoogle Scholar
  23. [23]
    T-W. Kim, K. Lee, S-H. Oh, G. Wang, D-Y Kim, G-Y. Jung and T. Lee, Nanotechnol. 19, 405201 (2008).CrossRefGoogle Scholar
  24. [24]
    J. J. Kim, B. Cho, K. S. Kim, T. Lee and G. Y. Jung, Adv. Mater. 23, 2104 (2011).CrossRefGoogle Scholar
  25. [25]
    B. Cho, K. H. Nam, S. Song, Y. Ji, G-Y. Jung and T. Lee, Curr. Appl. Phys. 12, 940 (2012).CrossRefADSGoogle Scholar
  26. [26]
    F. Verbakel, S. C. J. Meskers, R. A. J. Janssen, H. L. Gomes, M. Cölle, M. Büchel and D. M. de Leeuw, Appl. Phys. Lett. 91, 192103 (2007).CrossRefADSGoogle Scholar
  27. [27]
    S. Pyo, L. Ma, J. He, Q. Xu, Y. Yang and Y. Gao, J. Appl. Phys. 98, 054303 (2005).CrossRefADSGoogle Scholar
  28. [28]
    Y. Song, J. Jang, D. Yoo, S-H. Jung, S. Hong, J-K. Lee and T. Lee, Org. Electron. 17, 192 (2015).CrossRefGoogle Scholar
  29. [29]
    A. Zakhidov, J-K. Lee, H. H. Fong, J. A. DeFranco, M. Chatzichristidi, P. G. Taylor, C. K. Ober and G. G. Malliaras, Adv. Mater. 20, 3481 (2008).CrossRefGoogle Scholar
  30. [30]
    J-K. Lee, M. Chatzichristidi, A. A. Zakhidov, P. G. Taylor, J. A. DeFranco, H. S. Hwang, H. H. Fong, A. B. Holmes, G. G. Malliaras and C. K. Ober, J. Am. Chem. Soc. 130, 11564 (2008).CrossRefGoogle Scholar
  31. [31]
    A. Zakhidov, J-K. Lee, J. A. DeFranco, H. H. Fong, P. G. Taylor, M. Chatzichristidi, C. K. Ober and G. G. Malliaras, Chem. Sci. 2, 1178 (2011).CrossRefGoogle Scholar
  32. [32]
    Y. Ouyang, J-K. Lee, M. E. Krysak, J. Sha and C. K. Ober, J. Mater. Chem. 22, 5746 (2012).CrossRefGoogle Scholar
  33. [33]
    J. Jang, Y. Song, H. Oh, D. Yoo, H. Lee, S. Hong, J-K. Lee and T. Lee, Appl. Phys. Lett. 104, 053301 (2014).CrossRefADSGoogle Scholar
  34. [34]
    Y. Song, J. Jang, D. Yoo, S-H. Jung, H. Jeong, S. Hong, J-K. Lee and T. Lee, J. Nanosci. Nanotechnol. 15, 1 (2016).Google Scholar
  35. [35]
    D. Yoo, Y. Song, J. Jang, W-T. Hwang, S-H. Jung, S. Hong, J-K. Lee and T. Lee, Org. Electron. 21, 198 (2015).CrossRefGoogle Scholar
  36. [36]
    G. Ligorio, M. V. Nardi and N. Koch, Nano Lett. 17, 1149 (2017).CrossRefADSGoogle Scholar
  37. [37]
    M. J. Brett and M. M. Hawkeye, Science 319, 1192 (2008).CrossRefGoogle Scholar
  38. [38]
    M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007).CrossRefGoogle Scholar
  39. [39]
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan and W. Lu, Nat. Commun. 3, 732 (2012).CrossRefADSGoogle Scholar
  40. [40]
    Z. M. Liao, C. Hou, H. Z. Zhang, D. S. Wang and D. P. Yu, Appl. Phys. Lett. 96, 203109 (2010).CrossRefADSGoogle Scholar
  41. [41]
    X. Tian, L. Wang, J. Wei, S. Yang, W. Wang, Z. Xu and X. Bai, Nano Res. 7, 1065 (2014).CrossRefGoogle Scholar
  42. [42]
    W. L. Kwan, B. Lei, Y. Shao, S. V. Prikhodko, N. Bodzin and Y. Yang, J. Appl. Phys. 105, 124516 (2009).CrossRefADSGoogle Scholar
  43. [43]
    J. Chen and D. Ma, Appl. Phys. Lett. 87, 23505 (2005).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Institute of Applied PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations