Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 4, pp 466–478 | Cite as

Ultrafast Electron Diffraction Technology for Exploring Dynamics of Molecules

  • Kyu-Ha Jang
  • Key Young Oang
  • In Hyung Baek
  • Sadiq Setiniyaz
  • Kitae Lee
  • Young Uk JeongEmail author
  • Hyun Woo Kim
Review Articles
  • 228 Downloads
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

With the recent successful development of X-ray free electron lasers (X-FELs), it became possible to explore sub-nano structure dynamics of materials with 100-fs temporal accuracy. Ultrafast electron diffraction (UED) can achieve similar performance at a much lower cost and on a smaller scale by using ultrashort and low-energy electron beams. The UEDs are suitable for studying thin films, surfaces, and gas samples that are difficult to study with the X-FELs. Starting from non-relativistic UEDs using low-energy electron beams of less than 100 keV, it led to the development of relativistic UEDs using a-few-MeV electron beams. These efforts have contributed to the identification of the unexplored mechanism of matter by observing the dynamics of atoms with higher temporal accuracy. Electron beam is easier to handle than X-rays, and various technologies are being developed to improve the performance of UED. We review UEDs historically based on the development of core technologies. And application researches with the UEDs will be outlined in this paper.

Keywords

Time-resolved electron diffraction Ultrafast electron diffraction Electron diffraction Molecular movie Femtosecond dynamics Ultrafast science 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Emma et al., Nature Photon. 4, 641 (2010).ADSGoogle Scholar
  2. [2]
    T. Ishikawa et al., Nature Photon. 6, 540 (2012).ADSGoogle Scholar
  3. [3]
    H-S. Kang et al., Nature Photon. 11, 708 (2017).ADSGoogle Scholar
  4. [4]
    M. Centurion, J. Phys. B: At. Mol. Opt. Phys. 49, 062002 (2016).ADSGoogle Scholar
  5. [5]
    R. Mankowsky et al., Nature 516, 71 (2014).ADSGoogle Scholar
  6. [6]
    J. Yang et al., Phys. Rev. Lett. 117, 153002 (2016).ADSGoogle Scholar
  7. [7]
    R. Srinivasan et al., Helvetica Chimica Acta 86, 1761 (2003).Google Scholar
  8. [8]
    R. Henderson, Q. Rev. Biophys. 28, 171 (1995).Google Scholar
  9. [9]
    C. G. Shull and E. O. Wollan, Science 108, 69 (1948).ADSGoogle Scholar
  10. [10]
    S. P. Weathersby et al., Rev. Sci. Instrum. 86, 073702 (2015).ADSGoogle Scholar
  11. [11]
    C. Jacobsen et al., X-ray Microscopy and Spectromicroscopy, edited by J. Thieme, G. Schmahl, E. Umbach and D. Rudolph (Springer-Verlag, Berlin, 1998), II-93.Google Scholar
  12. [12]
    W. E. King et al., J. Appl. Phys. 97, 111101 (2005).ADSGoogle Scholar
  13. [13]
    L. K. Rudge et al., in Proceedings of 6th International Particle Accelerator Conference (IPAC 2015) (Richmond, Virginia, USA, May 3–8, 2015).Google Scholar
  14. [14]
    M. A. Van Hove et al., Low-Energy Electron Diffraction (Springer-Verlag, 1986).Google Scholar
  15. [15]
    M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 1 (1979).Google Scholar
  16. [16]
    C. Davisson and L. H. Germer, Phys. Rev. 705, 30 (1927).Google Scholar
  17. [17]
    N. J. C. Ingle et al., J. Phys. D: Appl. Phys. 43, 133001 (2010).ADSGoogle Scholar
  18. [18]
    P. K. Larson et al., Phys. Rev. B. 27, 4966 (1983).ADSGoogle Scholar
  19. [19]
    L. Wang et al., Jpn. J. Appl. Phys. 39, 4298 (2000).ADSGoogle Scholar
  20. [20]
    D. W. Pashley et al., Surf. Sci. 476, 35 (2001).ADSGoogle Scholar
  21. [21]
    T. Hanada et al., Phys. Rev. B. 64, 165307 (2001).ADSGoogle Scholar
  22. [22]
    J. W. Lee et al., Applied Surface Science 228, 3069 (2004).Google Scholar
  23. [23]
    G. Sciaini and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).ADSGoogle Scholar
  24. [24]
    A. A. Ischenko et al., J. Mol. Struct. 320, 147 (1994).ADSGoogle Scholar
  25. [25]
    J. D. Ewbank et al., Rev. Sci. Instrum. 63, 3352 (1992).ADSGoogle Scholar
  26. [26]
    V. A. Lobastov et al., Proc. Natl. Acad. Sci. U. S. A. 102, 7069 (2005).ADSGoogle Scholar
  27. [27]
    B. J. Siwick et al., Science 302, 1382 (2003).ADSGoogle Scholar
  28. [28]
    A. H. Zewail, Angew. Chem., Int. Ed. 40, 4371 (2001).Google Scholar
  29. [29]
    H. Ihee et al., Angew. Chem., Int. Ed. 40, 1532 (2001).Google Scholar
  30. [30]
    H. Ihee et al., Science 291, 458 (2001).ADSGoogle Scholar
  31. [31]
    C. Y. Ruan et al., Proc. Natl. Acad. Sci. U. S. A. 98, 7117 (2001).ADSGoogle Scholar
  32. [32]
    H. Ihee et al., Chem. Phys. Lett. 353, 325 (2002).ADSGoogle Scholar
  33. [33]
    R. Srinivasan et al., Helv. Chim. Acta 86, 1763 (2003).Google Scholar
  34. [34]
    R. Srinivasan et al., Science 307, 558 (2005).ADSGoogle Scholar
  35. [35]
    S. T. Park et al., J. Chem. Phys. 124, 174707 (2006).ADSGoogle Scholar
  36. [36]
    A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).ADSGoogle Scholar
  37. [37]
    V. A. Lobastov et al., Nano Lett. 7, 2552 (2007).ADSGoogle Scholar
  38. [38]
    D. Shorokhov and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 2879 (2008).Google Scholar
  39. [39]
    M. Chergui and A. H. Zewail, Chem. Phys. Chem. 10, 28 (2009).Google Scholar
  40. [40]
    G. Sciaini and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).ADSGoogle Scholar
  41. [41]
    X. J. Wang et al., in Proceedings of the 2003 Particle Accelerator Conference (Portland, Oregon, USA, May 12–16, 2003).Google Scholar
  42. [42]
    J. Yang et al., Nat. Commun. 7, 11232 (2016).ADSGoogle Scholar
  43. [43]
    J. Yang et al., Phys. Rev. Lett. 117, 153002 (2016).ADSGoogle Scholar
  44. [44]
    C. Gerbig et al., New J. Phys. 17, 043050 (2015).ADSGoogle Scholar
  45. [45]
    T. Van Oudheusden et al., Phy. Rev. Lett. 105, 264801 (2010).ADSGoogle Scholar
  46. [46]
    J. Faure et al., Phys. Rev. Accel. Beams 19, 021302 (2015).ADSGoogle Scholar
  47. [47]
    G. Storeck et al., Struct. Dyn. 4, 044024 (2017).Google Scholar
  48. [48]
    M. Gulde et al., Science 345, 6193 (2014).Google Scholar
  49. [49]
    V. Nicolosi et al., Science 340, 1226419 (2013).Google Scholar
  50. [50]
    S. Z. Butler et al., ACS Nano 7, 2898 (2013).Google Scholar
  51. [51]
    S. Das et al., Annu. Rev. Mater. Res. 45, 1 (2015).ADSGoogle Scholar
  52. [52]
    G. R. Bhimanapati et al., ACS Nano 9, 11509 (2015).Google Scholar
  53. [53]
    A. Gupta et al., Prog. Mater. Sci. 73, 44 (2015).Google Scholar
  54. [54]
    D. S. Badali et al., Struct. Dyn. 3, 034302 (2016).Google Scholar
  55. [55]
    A. Janzen et al., Rev. Sci. Instrum. 78, 013906 (2007).ADSGoogle Scholar
  56. [56]
    A. Hanisch-Blicharski et al., Ultramicroscopy 127, 2 (2013).Google Scholar
  57. [57]
    J. C. Williamson and A. H. Zewail, Chem. Phys. Lett. 209, 10 (1993).ADSGoogle Scholar
  58. [58]
    P. Baum and A. H. Zewail, PNAS 103, 16105 (2006).ADSGoogle Scholar
  59. [59]
    M. Ferrario et al., in Proceedings of the CAS-CERN Accelerator School: Advanced Accelerator Physics (Trondheim, Norway, 19–29 August (2013), edited by W. Herr, CERN-2014-009 (CERN, Geneva, 2014).Google Scholar
  60. [60]
    X. J. Wang et al., J. Korean Phys. Soc. 48, 390 (2006).Google Scholar
  61. [61]
    J. B. Hastings et al., Appl. Phys. Lett. 89, 184109 (2006).ADSGoogle Scholar
  62. [62]
    P. Musumeci et al., Ultramicroscopy 108, 1450 (2008).Google Scholar
  63. [63]
    R. Li et al., Rev. Sci. Instrum. 80, 083303 (2009).ADSGoogle Scholar
  64. [64]
    Y. Murooka et al., Appl. Phys. Lett. 98, 251903 (2011).ADSGoogle Scholar
  65. [65]
    M. Surman et al., in Proceedings of 5th International Particle Accelerator Conference (IPAC 2014) (Dresden, Germany, June 15–20, 2014), p. 2218.Google Scholar
  66. [66]
    S. Manz et al., Faraday Discuss. 177, 467 (2015).ADSGoogle Scholar
  67. [67]
    X. Shen et al., Ultramicroscopy 184, 172 (2018).Google Scholar
  68. [68]
    Z. Zhou et al., in Proceeding of SAP2017 (Jishou, China, 2017), p. 134.Google Scholar
  69. [69]
    Y. Giret et al., Appl. Phys. Lett. 103, 253107 (2013).ADSGoogle Scholar
  70. [70]
    S. L. Daraszewicz et al., Phys. Rev. B 88, 184101 (2013).ADSGoogle Scholar
  71. [71]
    P. Musumeci et al., Microsc. Microanal. 15, 290 (2009).ADSGoogle Scholar
  72. [72]
    P. L. E. M. Pasmans et al., Ultramicroscopy 127, 19 (2013).Google Scholar
  73. [73]
    L. Zhao et al., Phys. Rev. X. 8, 021061 (2018).Google Scholar
  74. [74]
    J. Maxson et al., Phys. Rev. Lett. 118, 154802 (2017).ADSGoogle Scholar
  75. [75]
    G. Mourou and S. Williamson, Appl. Phys. Lett. 41, 44 (1982).ADSGoogle Scholar
  76. [76]
    P. Musumeci et al., J. Appl. Phys. 108, 114513 (2010).ADSGoogle Scholar
  77. [77]
    R. Li et al., Rev. Sci. Instrum. 81, 036100 (2010).ADSGoogle Scholar
  78. [78]
    N. Vinokurov et al., in Proceedings of the Free Electron Laser Conference (FEL 2013) (New York, USA, August 26–30, 2013), p. 287.Google Scholar
  79. [79]
    H. W. Kim et al., in Proceedings of the Free Electron Laser Conference (FEL 2014) (Basel, Switzerland, August 25–29, 2014), p. 697.Google Scholar
  80. [80]
    S. Setiniyaz et al., J. Korean Phys. Soc. 69, 1019 (2016).ADSGoogle Scholar
  81. [81]
    D. Filippetto et al., in Proceedings of 5th International Particle Accelerator Conference (IPAC 2014) (Dresden, Germany, June 15–20, 2014), p. 724.Google Scholar
  82. [82]
    D. Filippetto and H. Qian, J. Phys. B: At. Mol. Opt. Phys. 49, 104003 (2016).ADSGoogle Scholar
  83. [83]
    L. W. Feng et al., Appl. Phys. Lett. 107, 224101 (2015), doi: 10.1063/1.4936192.ADSGoogle Scholar
  84. [84]
    H. Yang et al., Sci. Rep. 7, 39966 (2017).ADSGoogle Scholar
  85. [85]
    J. Hu. et al., Chem. Phys. Lett. 683, 258 (2017).ADSGoogle Scholar
  86. [86]
    J. Kim et al., in proceeding of the Free Electron Laser Conference (Trieste, 2004), p. 339.Google Scholar
  87. [87]
    J. Kim et al., Nat. Photonics 2, 73 (2008).Google Scholar
  88. [88]
    K. Jung and J. Kim, Opt. Lett. 37, 2958 (2012).ADSGoogle Scholar
  89. [89]
    X. Yan et al., Phys. Rev. Lett. 85 3404 (2000).ADSGoogle Scholar
  90. [90]
    S. P. Jamison et al., Nucl. Instr. And Meth. A 557, 305 (2006).ADSGoogle Scholar
  91. [91]
    A. Murokh et al., Nucl. Instr. And Meth. A 410, 452 (1998).ADSGoogle Scholar
  92. [92]
    D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006).ADSGoogle Scholar
  93. [93]
    J. Fabianska et al., Sci. Rep. 4, 5645 (2014).Google Scholar
  94. [94]
    C. Z. Bisgaard et al., Science 323, 1464 (2009).ADSGoogle Scholar
  95. [95]
    S. Weiss, Science 283, 1676 (1999).ADSGoogle Scholar
  96. [96]
    C. J. Milne et al., Coord. Chem. Rev. 277, 44 (2014).Google Scholar
  97. [97]
    S. Sil et al., Sci. Rep. 4, 5308 (2014).Google Scholar
  98. [98]
    V. Blanchet et al., Nature 401, 52 (1999).ADSGoogle Scholar
  99. [99]
    O. Geβner et al., Science 311, 219 (2006).ADSGoogle Scholar
  100. [100]
    S. Deb and P. M. Weber, Annu. Rev. Phys. Chem. 62, 19 (2011).ADSGoogle Scholar
  101. [101]
    F. Lépine et al., Nat. Photonics 8, 195 (2014).ADSGoogle Scholar
  102. [102]
    A. A. Ischenko et al., Appl. Phys. B: Photophys. Laser Chem. 32, 161 (1983).ADSGoogle Scholar
  103. [103]
    J. C. Williamson and A. H. Zewail, J. Phys. Chem. 98, 2766 (1994).Google Scholar
  104. [104]
    J. C. Williamson et al., Nature 386, 159 (1997).ADSGoogle Scholar
  105. [105]
    R. C. Dudek and P. M. Weber, J. Phys. Chem. A 105, 4167 (2001).Google Scholar
  106. [106]
    P. Musumeci et al., Appl. Phys. Lett. 97, 063502 (2010).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Kyu-Ha Jang
    • 1
  • Key Young Oang
    • 1
  • In Hyung Baek
    • 1
  • Sadiq Setiniyaz
    • 1
  • Kitae Lee
    • 1
  • Young Uk Jeong
    • 1
    Email author
  • Hyun Woo Kim
    • 2
  1. 1.Radiation Center for Ultrafast ScienceKorea Atomic Energy Research InstituteDaejeonKorea
  2. 2.University of Science and TechnologyDaejeonKorea

Personalised recommendations