Skip to main content
Log in

Ultrafast Electron Diffraction Technology for Exploring Dynamics of Molecules

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

With the recent successful development of X-ray free electron lasers (X-FELs), it became possible to explore sub-nano structure dynamics of materials with 100-fs temporal accuracy. Ultrafast electron diffraction (UED) can achieve similar performance at a much lower cost and on a smaller scale by using ultrashort and low-energy electron beams. The UEDs are suitable for studying thin films, surfaces, and gas samples that are difficult to study with the X-FELs. Starting from non-relativistic UEDs using low-energy electron beams of less than 100 keV, it led to the development of relativistic UEDs using a-few-MeV electron beams. These efforts have contributed to the identification of the unexplored mechanism of matter by observing the dynamics of atoms with higher temporal accuracy. Electron beam is easier to handle than X-rays, and various technologies are being developed to improve the performance of UED. We review UEDs historically based on the development of core technologies. And application researches with the UEDs will be outlined in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Emma et al., Nature Photon. 4, 641 (2010).

    ADS  Google Scholar 

  2. T. Ishikawa et al., Nature Photon. 6, 540 (2012).

    ADS  Google Scholar 

  3. H-S. Kang et al., Nature Photon. 11, 708 (2017).

    ADS  Google Scholar 

  4. M. Centurion, J. Phys. B: At. Mol. Opt. Phys. 49, 062002 (2016).

    ADS  Google Scholar 

  5. R. Mankowsky et al., Nature 516, 71 (2014).

    ADS  Google Scholar 

  6. J. Yang et al., Phys. Rev. Lett. 117, 153002 (2016).

    ADS  Google Scholar 

  7. R. Srinivasan et al., Helvetica Chimica Acta 86, 1761 (2003).

    Google Scholar 

  8. R. Henderson, Q. Rev. Biophys. 28, 171 (1995).

    Google Scholar 

  9. C. G. Shull and E. O. Wollan, Science 108, 69 (1948).

    ADS  Google Scholar 

  10. S. P. Weathersby et al., Rev. Sci. Instrum. 86, 073702 (2015).

    ADS  Google Scholar 

  11. C. Jacobsen et al., X-ray Microscopy and Spectromicroscopy, edited by J. Thieme, G. Schmahl, E. Umbach and D. Rudolph (Springer-Verlag, Berlin, 1998), II-93.

    Google Scholar 

  12. W. E. King et al., J. Appl. Phys. 97, 111101 (2005).

    ADS  Google Scholar 

  13. L. K. Rudge et al., in Proceedings of 6th International Particle Accelerator Conference (IPAC 2015) (Richmond, Virginia, USA, May 3–8, 2015).

    Google Scholar 

  14. M. A. Van Hove et al., Low-Energy Electron Diffraction (Springer-Verlag, 1986).

    Google Scholar 

  15. M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 1 (1979).

    Google Scholar 

  16. C. Davisson and L. H. Germer, Phys. Rev. 705, 30 (1927).

    Google Scholar 

  17. N. J. C. Ingle et al., J. Phys. D: Appl. Phys. 43, 133001 (2010).

    ADS  Google Scholar 

  18. P. K. Larson et al., Phys. Rev. B. 27, 4966 (1983).

    ADS  Google Scholar 

  19. L. Wang et al., Jpn. J. Appl. Phys. 39, 4298 (2000).

    ADS  Google Scholar 

  20. D. W. Pashley et al., Surf. Sci. 476, 35 (2001).

    ADS  Google Scholar 

  21. T. Hanada et al., Phys. Rev. B. 64, 165307 (2001).

    ADS  Google Scholar 

  22. J. W. Lee et al., Applied Surface Science 228, 3069 (2004).

    Google Scholar 

  23. G. Sciaini and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).

    ADS  Google Scholar 

  24. A. A. Ischenko et al., J. Mol. Struct. 320, 147 (1994).

    ADS  Google Scholar 

  25. J. D. Ewbank et al., Rev. Sci. Instrum. 63, 3352 (1992).

    ADS  Google Scholar 

  26. V. A. Lobastov et al., Proc. Natl. Acad. Sci. U. S. A. 102, 7069 (2005).

    ADS  Google Scholar 

  27. B. J. Siwick et al., Science 302, 1382 (2003).

    ADS  Google Scholar 

  28. A. H. Zewail, Angew. Chem., Int. Ed. 40, 4371 (2001).

    Google Scholar 

  29. H. Ihee et al., Angew. Chem., Int. Ed. 40, 1532 (2001).

    Google Scholar 

  30. H. Ihee et al., Science 291, 458 (2001).

    ADS  Google Scholar 

  31. C. Y. Ruan et al., Proc. Natl. Acad. Sci. U. S. A. 98, 7117 (2001).

    ADS  Google Scholar 

  32. H. Ihee et al., Chem. Phys. Lett. 353, 325 (2002).

    ADS  Google Scholar 

  33. R. Srinivasan et al., Helv. Chim. Acta 86, 1763 (2003).

    Google Scholar 

  34. R. Srinivasan et al., Science 307, 558 (2005).

    ADS  Google Scholar 

  35. S. T. Park et al., J. Chem. Phys. 124, 174707 (2006).

    ADS  Google Scholar 

  36. A. H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).

    ADS  Google Scholar 

  37. V. A. Lobastov et al., Nano Lett. 7, 2552 (2007).

    ADS  Google Scholar 

  38. D. Shorokhov and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 2879 (2008).

    Google Scholar 

  39. M. Chergui and A. H. Zewail, Chem. Phys. Chem. 10, 28 (2009).

    Google Scholar 

  40. G. Sciaini and R. J. D. Miller, Rep. Prog. Phys. 74, 096101 (2011).

    ADS  Google Scholar 

  41. X. J. Wang et al., in Proceedings of the 2003 Particle Accelerator Conference (Portland, Oregon, USA, May 12–16, 2003).

    Google Scholar 

  42. J. Yang et al., Nat. Commun. 7, 11232 (2016).

    ADS  Google Scholar 

  43. J. Yang et al., Phys. Rev. Lett. 117, 153002 (2016).

    ADS  Google Scholar 

  44. C. Gerbig et al., New J. Phys. 17, 043050 (2015).

    ADS  Google Scholar 

  45. T. Van Oudheusden et al., Phy. Rev. Lett. 105, 264801 (2010).

    ADS  Google Scholar 

  46. J. Faure et al., Phys. Rev. Accel. Beams 19, 021302 (2015).

    ADS  Google Scholar 

  47. G. Storeck et al., Struct. Dyn. 4, 044024 (2017).

    Google Scholar 

  48. M. Gulde et al., Science 345, 6193 (2014).

    Google Scholar 

  49. V. Nicolosi et al., Science 340, 1226419 (2013).

    Google Scholar 

  50. S. Z. Butler et al., ACS Nano 7, 2898 (2013).

    Google Scholar 

  51. S. Das et al., Annu. Rev. Mater. Res. 45, 1 (2015).

    ADS  Google Scholar 

  52. G. R. Bhimanapati et al., ACS Nano 9, 11509 (2015).

    Google Scholar 

  53. A. Gupta et al., Prog. Mater. Sci. 73, 44 (2015).

    Google Scholar 

  54. D. S. Badali et al., Struct. Dyn. 3, 034302 (2016).

    Google Scholar 

  55. A. Janzen et al., Rev. Sci. Instrum. 78, 013906 (2007).

    ADS  Google Scholar 

  56. A. Hanisch-Blicharski et al., Ultramicroscopy 127, 2 (2013).

    Google Scholar 

  57. J. C. Williamson and A. H. Zewail, Chem. Phys. Lett. 209, 10 (1993).

    ADS  Google Scholar 

  58. P. Baum and A. H. Zewail, PNAS 103, 16105 (2006).

    ADS  Google Scholar 

  59. M. Ferrario et al., in Proceedings of the CAS-CERN Accelerator School: Advanced Accelerator Physics (Trondheim, Norway, 19–29 August (2013), edited by W. Herr, CERN-2014-009 (CERN, Geneva, 2014).

  60. X. J. Wang et al., J. Korean Phys. Soc. 48, 390 (2006).

    Google Scholar 

  61. J. B. Hastings et al., Appl. Phys. Lett. 89, 184109 (2006).

    ADS  Google Scholar 

  62. P. Musumeci et al., Ultramicroscopy 108, 1450 (2008).

    Google Scholar 

  63. R. Li et al., Rev. Sci. Instrum. 80, 083303 (2009).

    ADS  Google Scholar 

  64. Y. Murooka et al., Appl. Phys. Lett. 98, 251903 (2011).

    ADS  Google Scholar 

  65. M. Surman et al., in Proceedings of 5th International Particle Accelerator Conference (IPAC 2014) (Dresden, Germany, June 15–20, 2014), p. 2218.

    Google Scholar 

  66. S. Manz et al., Faraday Discuss. 177, 467 (2015).

    ADS  Google Scholar 

  67. X. Shen et al., Ultramicroscopy 184, 172 (2018).

    Google Scholar 

  68. Z. Zhou et al., in Proceeding of SAP2017 (Jishou, China, 2017), p. 134.

    Google Scholar 

  69. Y. Giret et al., Appl. Phys. Lett. 103, 253107 (2013).

    ADS  Google Scholar 

  70. S. L. Daraszewicz et al., Phys. Rev. B 88, 184101 (2013).

    ADS  Google Scholar 

  71. P. Musumeci et al., Microsc. Microanal. 15, 290 (2009).

    ADS  Google Scholar 

  72. P. L. E. M. Pasmans et al., Ultramicroscopy 127, 19 (2013).

    Google Scholar 

  73. L. Zhao et al., Phys. Rev. X. 8, 021061 (2018).

    Google Scholar 

  74. J. Maxson et al., Phys. Rev. Lett. 118, 154802 (2017).

    ADS  Google Scholar 

  75. G. Mourou and S. Williamson, Appl. Phys. Lett. 41, 44 (1982).

    ADS  Google Scholar 

  76. P. Musumeci et al., J. Appl. Phys. 108, 114513 (2010).

    ADS  Google Scholar 

  77. R. Li et al., Rev. Sci. Instrum. 81, 036100 (2010).

    ADS  Google Scholar 

  78. N. Vinokurov et al., in Proceedings of the Free Electron Laser Conference (FEL 2013) (New York, USA, August 26–30, 2013), p. 287.

    Google Scholar 

  79. H. W. Kim et al., in Proceedings of the Free Electron Laser Conference (FEL 2014) (Basel, Switzerland, August 25–29, 2014), p. 697.

    Google Scholar 

  80. S. Setiniyaz et al., J. Korean Phys. Soc. 69, 1019 (2016).

    ADS  Google Scholar 

  81. D. Filippetto et al., in Proceedings of 5th International Particle Accelerator Conference (IPAC 2014) (Dresden, Germany, June 15–20, 2014), p. 724.

    Google Scholar 

  82. D. Filippetto and H. Qian, J. Phys. B: At. Mol. Opt. Phys. 49, 104003 (2016).

    ADS  Google Scholar 

  83. L. W. Feng et al., Appl. Phys. Lett. 107, 224101 (2015), doi: 10.1063/1.4936192.

    ADS  Google Scholar 

  84. H. Yang et al., Sci. Rep. 7, 39966 (2017).

    ADS  Google Scholar 

  85. J. Hu. et al., Chem. Phys. Lett. 683, 258 (2017).

    ADS  Google Scholar 

  86. J. Kim et al., in proceeding of the Free Electron Laser Conference (Trieste, 2004), p. 339.

    Google Scholar 

  87. J. Kim et al., Nat. Photonics 2, 73 (2008).

    Google Scholar 

  88. K. Jung and J. Kim, Opt. Lett. 37, 2958 (2012).

    ADS  Google Scholar 

  89. X. Yan et al., Phys. Rev. Lett. 85 3404 (2000).

    ADS  Google Scholar 

  90. S. P. Jamison et al., Nucl. Instr. And Meth. A 557, 305 (2006).

    ADS  Google Scholar 

  91. A. Murokh et al., Nucl. Instr. And Meth. A 410, 452 (1998).

    ADS  Google Scholar 

  92. D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006).

    ADS  Google Scholar 

  93. J. Fabianska et al., Sci. Rep. 4, 5645 (2014).

    Google Scholar 

  94. C. Z. Bisgaard et al., Science 323, 1464 (2009).

    ADS  Google Scholar 

  95. S. Weiss, Science 283, 1676 (1999).

    ADS  Google Scholar 

  96. C. J. Milne et al., Coord. Chem. Rev. 277, 44 (2014).

    Google Scholar 

  97. S. Sil et al., Sci. Rep. 4, 5308 (2014).

    Google Scholar 

  98. V. Blanchet et al., Nature 401, 52 (1999).

    ADS  Google Scholar 

  99. O. Geβner et al., Science 311, 219 (2006).

    ADS  Google Scholar 

  100. S. Deb and P. M. Weber, Annu. Rev. Phys. Chem. 62, 19 (2011).

    ADS  Google Scholar 

  101. F. Lépine et al., Nat. Photonics 8, 195 (2014).

    ADS  Google Scholar 

  102. A. A. Ischenko et al., Appl. Phys. B: Photophys. Laser Chem. 32, 161 (1983).

    ADS  Google Scholar 

  103. J. C. Williamson and A. H. Zewail, J. Phys. Chem. 98, 2766 (1994).

    Google Scholar 

  104. J. C. Williamson et al., Nature 386, 159 (1997).

    ADS  Google Scholar 

  105. R. C. Dudek and P. M. Weber, J. Phys. Chem. A 105, 4167 (2001).

    Google Scholar 

  106. P. Musumeci et al., Appl. Phys. Lett. 97, 063502 (2010).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Uk Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, KH., Oang, K.Y., Baek, I.H. et al. Ultrafast Electron Diffraction Technology for Exploring Dynamics of Molecules. J. Korean Phys. Soc. 73, 466–478 (2018). https://doi.org/10.3938/jkps.73.466

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.466

Keywords

Navigation