Skip to main content
Log in

Spatially-Resolved Remote Plasma Atomic Layer Deposition Process for Moisture Barrier Al2O3 Films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, nanoscale-thickness Al2O3 layers for moisture barrier films were developed by a spatially resolved remote plasma atomic layer deposition process. The effect of various process parameters was investigated on the atomic concentration of Al2O3 films including the substrate temperature, plasma power, and scanning speed of the substrates. Carbon components were identified as major impurities in the films and is reduced at high temperature, high plasma power and low speed. Optimum conditions are maximum temperature of 80 °C to prevent plastic substrate deformation, a maximum plasma power of 150 W without surface damage and maximum speed of 125 mm/sec to maintain a low carbon contents. The water vapor transmission rate (WVTR) of 3.2 × 10 −4 g/(m2·day) was achieved with 30 nm-thick film in optimum condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Logothetidis, Mat. Sci. Eng. B 152, 96 (2008).

    Article  Google Scholar 

  2. J. S. Lewis and M. S. Weaver, J. Quantum. Electron. 10, 45 (2004).

    Article  Google Scholar 

  3. J. S. Park, H. Chae, H. K. Chung and S. I. Lee, Semicond. Sci. Technol. 26, 034001 (2011).

    Article  ADS  Google Scholar 

  4. D. Yu, Y. Q. Yang, Z. Chen, Y. Tao and Y. F. Liu, Opt. commun. 43, 362 (2006).

    Google Scholar 

  5. T. O. Kääriäinen and D. C. Cameron, Plasma Process. Polym. 6, S237 (2009).

    Article  Google Scholar 

  6. S. E. Potts, G. Dingemans, C. Lachaud and W. M. M. Kessels, J. Vac. Sci. Technol. A 30, 021505 (2012).

    Article  Google Scholar 

  7. S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung and H. Jeon, Curr. Appl. Phys. 14, 552 (2014).

    Article  ADS  Google Scholar 

  8. H. Choi, S. Lee, H. Jung, S. Shin, G. Ham, H. Seo and H. Jeon, Jpn. J. Appl. Phys. 52, 035502 (2013).

    Article  ADS  Google Scholar 

  9. Y. Q. Yang, Y. Duan, P. Chen, F. B. Sun, Y. H. Duan, X. Wang and D. Yang, J. Phys. Chem. C 117, 20308 (2013).

    Article  Google Scholar 

  10. Y. Duan, F. Sun, Y. Yang, P. Chen, D. Yang, Y. Duan and X. Wang, Appl. Mater. Interfaces 6, 3799 (2014).

    Article  Google Scholar 

  11. P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner and S. M. George, ACS Appl. Phys. Lett. 89, 031915 (2006).

    Article  ADS  Google Scholar 

  12. A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. Mclean and S. M. George, J. Phys. Chem. C 112, 4573 (2008).

    Article  Google Scholar 

  13. S. K. Kim, S. W. Lee, C. S. Hwang, Y. Min, J. Y. Won and J. Jeong, J. Electrochem. Soc. 153, F69 (2006).

    Article  Google Scholar 

  14. P. Poodt et al., J. Vac. Sci. Technol. A 30, 010802 (2012).

    Article  Google Scholar 

  15. T. Hirvikorpi et al., Thin Solid Films 550, 164 (2014).

    Article  ADS  Google Scholar 

  16. P. S. Maydannik, A. Plyushch, M. Sillanpaa and D. C. Cameron, J. Vac. Sci. Technol. A 33, 31603 (2015).

    Article  Google Scholar 

  17. P. S. Maydannik et al., J. Vac. Sci. Technol. A 32, 051603 (2014).

    Article  Google Scholar 

  18. H. Choi, S. Shin, H. Jeon, Y. Choi, J. Kim, S. Kim, S. C. Chung and K. Oh, J. Vac. Sci. Techno. A 34, 01A121 (2016).

    Article  Google Scholar 

  19. S. W. Seo, E. Jung, H. Chae and S. M. Cho, Org. Electon. 13, 2436 (2012).

    Article  Google Scholar 

  20. M. Choi, Y. Kim and C. Ha, Prog. Polym. Sci. 33, 581 (2008).

    Article  Google Scholar 

  21. H. Liu, W. Ou and W. Hsu, J. Electron Devices Soc. 4, 5 (2016).

    Google Scholar 

  22. K. Choi, K. Ali, C. Y. Kim and N. M. Muhammad, Chem. Vap. Deposition 20, 118 (2014).

    Article  Google Scholar 

  23. W. Ban, S. Kwon, J. Nam, J. Yang, S. Jang and D. Jung, Thin Solid Films 641, 47 (2017).

    Article  ADS  Google Scholar 

  24. T. Gougousi, D. Barua, E. D. Young and G. N. Parsons, Chem. Mater 17, 5093 (2005).

    Article  Google Scholar 

  25. E. Raymundo-Pi˜nero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild and R. Schlögl, Carbon 40, 597 (2002).

    Article  Google Scholar 

  26. S. Kundu, Y. Wang, W. Xia and M. Muhler, J. Phys. Chem. C 112, 16869 (2008).

    Article  Google Scholar 

  27. J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida, D. Schmeiβer and Beilstein J. Nanotechnol. 4, 732 (2013).

    Article  Google Scholar 

  28. M. Li, D. Gao, S. Li, Z. Zhou, J. Zou, H. Tao, L. Wang, M. Xu and J. Peng, RSC Adv. 5, 104613 (2015).

    Article  Google Scholar 

  29. M. R. Saleem, R. Ali, S. Honkanen and J. Turunen, Thin Solid Films 542, 257 (2013).

    Article  ADS  Google Scholar 

  30. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe and C. Detavernier, J. Electrochem. Soc. 157, G111 (2010).

    Article  Google Scholar 

  31. J. Lee, H. Kim, T. Park, Y. Ko, H. Jeon, J. Park, J. Ryu and H. Jeon, J. Nanosci. Nanotechnol. 12, 7 (2012).

    Google Scholar 

  32. W. Kim, D. Moon, B. Kang and J. Park, J. Korean Phys. Soc. 55, 55 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heeyeop Chae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, S.H., Kim, S.J., Cho, S.M. et al. Spatially-Resolved Remote Plasma Atomic Layer Deposition Process for Moisture Barrier Al2O3 Films. J. Korean Phys. Soc. 73, 45–52 (2018). https://doi.org/10.3938/jkps.73.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.45

Keywords

Navigation