Skip to main content
Log in

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of 2.41 × 1016 and the other with a density of 3.91×1016 cm −3. However, after maximum electrical stress, three sets of deep-level states, with respective densities of 1.82×1016, 2.32×1016 cm −3, 5.31×1016 cm −3 were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, Phys. Stat. Sol. (a) 206, 1176 (2009).

    Article  ADS  Google Scholar 

  2. U. Kasten, D. Beyersmann, J. Dahm-Daphi and A. Harwig, Mutat. Res. 336, 143 (1995).

    Article  Google Scholar 

  3. H. Kudo, M. Sawai, Y. Suzuki, X. Wang, T. Gessei, D. Takahasho, T. Arakawa and K. Mitsubayashi, Sens. Actuator B-Chem. 147, 676 (2010).

    Article  Google Scholar 

  4. J. Close, J. Ip and K. H. Lam, Renew. Energy 31, 1657 (2006).

    Article  Google Scholar 

  5. J. L. Shie, C. H. Lee, C. S. Chiou, C. T. Chang, C. C. Chang and C. Y. Chang, J. Hazard. Mater. 155, 164 (2008).

    Article  ADS  Google Scholar 

  6. M. Menegehini, L. R. Trevisanello, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 323 (2008).

    Article  Google Scholar 

  7. M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 57, 108 (2010).

    Article  ADS  Google Scholar 

  8. M. A. Khan, Phys. Stat. Sol. (a) 203, 1764 (2006).

    Article  ADS  Google Scholar 

  9. L. X. Zhao, E. J. Thrush, C. J. Humphreys and W. A. Phillips, J. Appl. Phys. 103, 024501 (2008).

    Article  ADS  Google Scholar 

  10. E. Jung, M. Kim and H. Kim, IEEE Trans. Electron. Dev. 60, 186 (2013).

    Article  ADS  Google Scholar 

  11. E. Jung, J. H. Ryou, C. H. Hong and H. Kim, J. Electrochem. Soc. 158, H132 (2011).

    Article  Google Scholar 

  12. G. Meneghesso, S. Levada, R. Pierobon, F. Rampazzo, E. Zanoni, A. Cavallini, A. Castaldini, G. Scamarcio, S. Du and I. Eliasevich, in IEDM Tech. Dig. 103 (2002).

    Google Scholar 

  13. R. Mueller-Mach, G. Mueller, M. Krames and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002).

    Article  ADS  Google Scholar 

  14. M. Meneghini, M. la Grassa, S. Vaccari, B. Galler, R. Zeisel, P. Drechsel, B. Hahn, G. Meneghesso and E. Zanoni, Appl. Phys. Lett. 104, 113505 (2014).

    Article  ADS  Google Scholar 

  15. L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003).

    Article  ADS  Google Scholar 

  16. R. Nana, P. Gnanachchelvi, M. A. Awaah, M. H. Gowda, A. M. Kamto, Y. Wang, M. Park and K. Das, Phys. Stat. Sol. (a) 207, 1489 (2010).

    Article  ADS  Google Scholar 

  17. E. Jung, S. Jeong, J. H. Ryou and H. Kim, J. Nanosci. Nanotechnol. 17, 7339 (2017).

    Article  Google Scholar 

  18. L. R. Trevisanello, M. Meneghini, G. Mura, C. Sanna, S. Buso, G. Spiazzi, M. Vanzi, G. Meneghesso and E. Zanoni, Proc. SPIE 6669, 666913 (2007).

    Article  Google Scholar 

  19. L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 304 (2008).

    Article  Google Scholar 

  20. M. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 53, 2981 (2006).

    Article  ADS  Google Scholar 

  21. W. Shockley Bell Syst. Tech. J. 28, 435 (1949).

    Article  Google Scholar 

  22. H. Kim, J. Cho, Y. Park and T. Y. Seong, Appl. Phys. Lett. 92, 092115 (2008).

    Article  ADS  Google Scholar 

  23. D. Zhu, A. N. Noemaun, J. Kim, E. F. Schubert, M. H. Crawford and D. D. Koleske, Appl. Phys. Lett. 94, 081113 (2009).

    Article  ADS  Google Scholar 

  24. M. A. Lambert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).

    Google Scholar 

  25. A. Rose, Phys. Rev. 97, 1538 (1955).

    Article  ADS  Google Scholar 

  26. J. Osaka, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, Appl. Phys. Lett. 87, 222112 (2005).

    Article  ADS  Google Scholar 

  27. A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra and S. P. Denbaars, Appl. Phys. Lett. 77, 1499 (2000).

    Article  ADS  Google Scholar 

  28. T. Mattila and R. M. Nieminen, Phys. Rev. B 54, 16676 (1996).

    Article  ADS  Google Scholar 

  29. A. Mao, J. Cho, Q. Dai, E. F. Schubert, J. K. Son and Y. Park, Appl. Phys. Lett. 98, 023503 (2011).

    Article  ADS  Google Scholar 

  30. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, Appl. Phys. Lett. 72, 1365 (1998).

    Article  ADS  Google Scholar 

  31. J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila and K. Saarinen, Appl. Phys. Lett. 82, 40 (2003).

    Article  ADS  Google Scholar 

  32. R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas and K. Saarinen, Appl. Phys. Lett. 82, 3457 (2003).

    Article  ADS  Google Scholar 

  33. M. W. Bayerl, M. S. Brandt, O. Ambacher, M. Stutzmann, E. R. Glaser, R. L. Henry, A. E. Wickenden, D. D. Koleske, T. Suski, I. Grzegory and S. Porewski, Phys. Rev. B 63, 125203 (2001).

    Article  ADS  Google Scholar 

  34. Q. Yan, A. Janotti, M. Scheffler and C. G. van de Walle, Appl. Phys. Lett. 100, 142110 (2012).

    Article  ADS  Google Scholar 

  35. L. Lymperakis, J. Neugebauer, M. Albrecht, T. Remmele and H. P. Strunk, Phys. Rev. Lett. 93, 196401 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunsoo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Kim, H. & Lee, SN. Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress. J. Korean Phys. Soc. 73, 1879–1883 (2018). https://doi.org/10.3938/jkps.73.1879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1879

Keywords

Navigation