Skip to main content
Log in

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Momose, T. Takeda, Y. Itai and K. Hirano, Nat. Med. 2, 473 (1996).

    Article  Google Scholar 

  2. S. W. Lee et al., J. Korean Phys. Soc. 71, 9 (2017).

    Google Scholar 

  3. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki, Jpn. J. of Appl. Phys. 42, L866 (2003).

    Article  ADS  Google Scholar 

  4. F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. Lett. 81, 3287 (2002).

    Google Scholar 

  5. F. Pfeiffer et al., Nat. Mater 7, 134 (2008).

    Article  ADS  Google Scholar 

  6. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova et al., J. Appl. Phys. 106, 054703 (2009).

    Article  ADS  Google Scholar 

  7. A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer and D. Stutman, Med. Phys. 41, 2 (2014).

    Article  Google Scholar 

  8. C. Kottler, V. Revol, R. Kaufmann and C. Urban, J. Appl. Phys. 108, 114906 (2010).

    Article  ADS  Google Scholar 

  9. P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel et al., J. Instrum. 5, P10008 (2010).

    Article  Google Scholar 

  10. A. Sarapata, M. Willner, M. Walter, T. Duttenhofer, K. Kaiser et al., Opt. Express 23, 1 (2015).

    Article  Google Scholar 

  11. F. Horn, C. Hauke, S. Lachner, V. Ludwig, G. Pelzer et al., Proc. of SPIE 9783, 97830 (2016).

    Google Scholar 

  12. F. Horn, K. Gelse, S. Jabari, C. Hauke, S. Kaeppler et al., Phys. Med. Biol. 62, 6729 (2017).

    Article  Google Scholar 

  13. C. Hauke, F. Horn, G. Pelzer, J. Rieger, S. Lachner et al., Proc. of SPIE 9783, 97835 (2016).

    Google Scholar 

  14. L. B. Gromann, F. D. Marco, K. Wiler, P. B. Noel, K. Scherer et al., Sci. Rep. 7, 4807 (2017).

    Article  ADS  Google Scholar 

  15. T. Thuring, M. Abis, Z. Wang, C. David and M. Stampanoni, Sci. Rep. 4, 5198 (2014).

    Article  ADS  Google Scholar 

  16. A. Momose, H. Kuwabara and W. Yashiro, Appl. Phys Express 4, 066603 (2011).

    Article  ADS  Google Scholar 

  17. A. Momose, W. Yashiro and Y. Takeda, Jpn. J. Appl. Phys. 47, 10 (2008).

    Google Scholar 

  18. https://doi.org/henke.lbl.gov/opticalconstants/getdb2.html.

  19. https://doi.org/physics.nist.gov/cgi-bin/Xcom/xcom2.

  20. S. Marathe, L. Assoufid, X. Xiao, K. Ham, W. W. Johnson and L. G. Butler, Rev. Sci. Instrum. 85, 013704 (2014).

    Article  ADS  Google Scholar 

  21. T. J. Schroter, F. J. Koch, P. Meyer, D. Kunka, J. Meiser et al., Rev. Sci. Instrum. 88, 015104 (2017).

    Article  ADS  Google Scholar 

  22. T. Koelhler, H. Daerr, G. Martens, N. Kuhn, S. Loscher et al., Med. Phys. 42, 4 (2015).

    Google Scholar 

  23. S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Sci. Rep. 7, 6711 (2017).

    Article  ADS  Google Scholar 

  24. S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Proc. of SPIE 9964, 99640 (2016).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Wook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Oh, O., Kim, Y. et al. System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications. J. Korean Phys. Soc. 73, 1827–1833 (2018). https://doi.org/10.3938/jkps.73.1827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1827

Keywords

Navigation