Skip to main content
Log in

The Influence of Confining Parameters on the Ground State Properties of Interacting Electrons in a Two-dimensional Quantum Dot with Gaussian Potential

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this work, the ground-state properties of an interacting electron gas confined in a twodimensional quantum dot system with the Gaussian potential v(r) = V0(1 − exp(−r2/p)), where V0 and p are confinement parameters, are determined numerically by using the Thomas-Fermi approximation. The shape of the potential is modified by changing the V0 and p values, and the influence of the confining potential on the system’s properties, such as the chemical energy, the density profile, the kinetic energy, the confining energy, etc., is analyzed for both the non-interacting and the interacting cases. The results are compared with those calculated for a harmonic potential, and excellent agreement is obtained in the limit of high p values for both the non-interacting and the interacting cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Leyronas and M. Combescot, Solid State Comm. 119, 631 (2001).

    Article  ADS  Google Scholar 

  2. D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  3. M. Russ, A. Lorke, D. Reuter and P. Schafmeister, Physica E 22, 506 (2004).

    Article  ADS  Google Scholar 

  4. Y. Xiong and X. Zhang, IEE J. Quantum Electronics 54, 2000109 (2018).

    Google Scholar 

  5. C. M. Imperato, G. A. Ranepura, L. I. Deych and I. L Kuskovsky, J. of Electronic Mater. 47, 4325 (2018).

    Article  ADS  Google Scholar 

  6. I. D. Amico, Microelect. J. 37, 1440 (2006).

    Article  Google Scholar 

  7. M. Sahin, J. of Phys. Condens. Matter 30, 205301 (2018).

    Article  ADS  Google Scholar 

  8. A. E. Kavruk, M. Sahin and U. Atav, J. Phys. D:Appl. Phys. 47, 295302 (2014).

    Article  Google Scholar 

  9. A. Bera, A. Ghosh and M. Ghosh, Opt. Mater. 69, 352 (2017).

    Article  ADS  Google Scholar 

  10. M. Godlewski, V. Y. Ivanov, P. J. Bergman, B. Monemar, Z. Golacki and G. Karczewski, J. Alloys and Compd. 341, 8 (2002).

    Article  Google Scholar 

  11. J. S. Kim, H. Kang, C. C. Byeon, M. S. Jeong and S-Y. Yim, J. Korean Phys. Soc. 55, 1051 (2009).

    Article  ADS  Google Scholar 

  12. J. Drbohlavova, V. Adam, R. Kizek and J. Hubalek, Int. J. Mol. Sci. 10, 656 (2009).

    Article  Google Scholar 

  13. L. Jacak, P. Hawrylak and A. Wojs, Quantum Dots (Berlin, Springer, 1998).

    Book  Google Scholar 

  14. L. Jacak, Eur. J. Phys. 21, 487 (2000).

    Article  ADS  Google Scholar 

  15. N. F. Johnson, J. of Phys.: Condens. Matter 7, 965 (1995).

    ADS  Google Scholar 

  16. E. H. Lieb, J. P. Solovej and J. Yngvason, Phys. Rev. B 51, 10646 (1995).

    Article  ADS  Google Scholar 

  17. J-B. Xia, Phys. Rev. B 40, 8500 (1989).

    Article  ADS  Google Scholar 

  18. P. C. Sercel and K. J. Vahala, Phys. Rev. B 42 3690 (1990).

    Article  ADS  Google Scholar 

  19. M. Wagner, U. Merkt and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992).

    Article  ADS  Google Scholar 

  20. J. Tulkki and A. Henamaki, Phys. Rev. B 52, 8239 (1995).

    Article  ADS  Google Scholar 

  21. B. Gülveren, Solid State Sci. 14, 94 (2012).

    Article  ADS  Google Scholar 

  22. D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Koskinen and M. Manninen, Physica B 272, 68 (1999).

    Article  ADS  Google Scholar 

  23. A. Wojs, P. Hawrylak, S. Fafarad and L. Jacak, Phys. Rev. B 54, 5604 (1996).

    Article  ADS  Google Scholar 

  24. D. Heitmann, K. K. Bollweg, V. Gudmundsson, T. Kurth and S. P. Riege, Physica E 1, 204 (1997).

    Article  ADS  Google Scholar 

  25. B. T. Miller, W. Hansen, S. Manus, R. J. Luyken, A. Lorke, J. P. Kotthaus, S. Huant, G. Mediros-Ribeiro and P. M. Petroff, Phys. Rev. B 56, 6764 (1997).

    Article  ADS  Google Scholar 

  26. J. Adamowski, M. Sobkovize, B. Szafran and S. Bednarek, Phys. Rev. B 62, 4234 (2000).

    Article  ADS  Google Scholar 

  27. X. Wen-Fang, Chinese Phys. Lett. 22, 1768 (2005).

    Article  ADS  Google Scholar 

  28. M. A. Semina, A. A. Golovatenko and A. V. Rodina, Phys. Rev. B 93, 045409 (2016).

    Article  ADS  Google Scholar 

  29. A. Gharaati and R. Khordad, Superlattice and Microst. 48, 276 (2010).

    Article  ADS  Google Scholar 

  30. L. Lu, W. Xie and H. Hassanabadi, Physica B 406, 4129 (2011).

    Article  ADS  Google Scholar 

  31. R. Pino, A. Markvoort and P. A. J. Hilberts, Physica B 325, 149 (2011).

    Article  ADS  Google Scholar 

  32. R. Pino, A. Markvoort and P. A. J. Hilberts, Eur. Phys. J. B 23, 103 (2001).

    Article  ADS  Google Scholar 

  33. A. Sergeev, R. Jovanovic, S. Kais and F. H Alharbi, J. Phys. A: Math. Theor. 49, 285202 (2016).

    Article  Google Scholar 

  34. E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).

    Article  ADS  Google Scholar 

  35. E. Cappelluti and L. D. Site, Physica A 303, 481 (2002).

    Article  ADS  Google Scholar 

  36. I. Porras, J. Math. Chem. 46, 795 (2009).

    Article  MathSciNet  Google Scholar 

  37. D. Ninno, F. Trani, G. Cantele, K. J. Hameeuw, G. Iadonisi, E. Degoli and S. Ossicini, Europhys. Lett. 74, 519 (2006).

    Article  ADS  Google Scholar 

  38. R. Pino, Phys. Rev. B 58, 4644 (1998).

    Article  ADS  Google Scholar 

  39. E. H. Lieb, J. P. Solovej and J. Yngvason, Phys. Rev. B 51, 646 (2000).

    Google Scholar 

  40. S. Sinha, R. Shankar and M. V. Murthy, Phys. Rev. B 62, 896 (2000).

    Article  Google Scholar 

  41. S. Sinha, Physica E 8, 24 (2000).

    Article  ADS  Google Scholar 

  42. A. Puente, M. Casas and L. Serra, Physica E 8, 387 (2000).

    Article  ADS  Google Scholar 

  43. S. J. Puglia, A. Bhattacharrya and R. J. Furnstahl, Nucl. Phys. A 723, 145 (2003).

    Article  ADS  Google Scholar 

  44. P. Vignolo and A. Minguzzi and M. P. Tosi, Phys. Rev. Lett. 85, 2850 (2000).

    Article  ADS  Google Scholar 

  45. G. M. Bruun and K. Burnett, Phys. Rev. A 58, 2427 (1998).

    Article  ADS  Google Scholar 

  46. R. K. Bhaduri, M. V. N. Murthy and M. K. Srivastava, Phys. Rev. Lett. 76, 165 (1996).

    Article  ADS  Google Scholar 

  47. H. Yoshimoto and S. Kurihara, J. Phys. A 36, 10461 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Alfarisa, W. S. B. Dwandaru and D. Darmawan, Makara J. Sci. 20, 28 (2016).

    Article  Google Scholar 

  49. M. Ögren and H. Heiselberg, Phys. Rev. A 76, 021601(R) (2007).

    Article  ADS  Google Scholar 

  50. G. Su, J. Chen and L. Chen, Phys. Lett. A 315, 109 (2003).

    Article  ADS  Google Scholar 

  51. B. Gülveren, Int. J. Mod. Phys. B 26, 1250152 (2012).

    Article  Google Scholar 

  52. B. Gülveren, Int. J. Mod. Phys. B 26, 1250029–1 (2012).

    Article  Google Scholar 

  53. J. S. Blakemore, Solid-State Electron 25, 1067 (1982).

    Article  ADS  Google Scholar 

  54. R. K. Pathria, Statistical Mechanics (Pergamon, New York, 1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berna Gülveren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülveren, B. The Influence of Confining Parameters on the Ground State Properties of Interacting Electrons in a Two-dimensional Quantum Dot with Gaussian Potential. J. Korean Phys. Soc. 73, 1612–1618 (2018). https://doi.org/10.3938/jkps.73.1612

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1612

Keywords

Navigation