Skip to main content
Log in

Cube-Shaped Cetyltrimethyl Ammonium Bromide-Coated Nickel Ferrite Nanoparticles for Hyperthermia Applications

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Cetyltrimethyl ammonium bromide (CTAB)-coated nickel ferrite (NiFe2O4) nanoparticles were synthesized using the high-temperature thermal decomposition method. The hydrophobic particles became water-soluble after the coating with CTAB, a positively charged ligand. The morphology and the phases of the nanoparticles were characterized using X-ray diffraction and transmission electron microscopy (TEM). TEM images demonstrated that the particles were cube-shaped; the average length of their side was 32.6 nm. Inductively coupled plasma spectroscopy measurements were performed to confirm the chemical composition of the particles. The particles exhibited superparamagnetic behavior with negligible coercive force. Magnetic heating of the aqueous suspensions of nanoparticles was performed in the presence of a radio-frequency magnetic field of 4.4 kA/m at a frequency of 216 kHz. The 1.5-mg/mL sample reached the hyperthermia target temperature of 42 °C and exhibited a high specific absorption rate (SAR) value of 152 W/g. These findings show that the investigated nanoparticles are suitable for magnetic hyperthermia applications and have the advantage of low dosage owing to their high SAR values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).

    Article  ADS  Google Scholar 

  2. A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 447, 42 (2018).

    Article  ADS  Google Scholar 

  3. I. Rhee, New Physics: Sae Mulli 65, 411 (2015).

    Google Scholar 

  4. T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong, J. Lee, Y. Chang and D. Sohn, J. Magn. Magn. Mater. 381, 151 (2015).

    Article  ADS  Google Scholar 

  5. P. Mehrotra, J. Oral Biol. Craniofac. Res. 6, 153 (2016).

    Article  Google Scholar 

  6. J. Lee, M. Morita, K. Takemura and Y. Park, Biosens. Bioelectron. 102, 425 (2018).

    Article  Google Scholar 

  7. W. H. De Jong and P. J. A. Borm, Int. J. Nanomedicine 3, 133 (2008).

    Article  Google Scholar 

  8. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz and H. Car, Pharmacol. Rep. 64, 1020 (2012).

    Article  Google Scholar 

  9. R. Hergt, R. Hiergeist, I. Hilger, W. A. Kaiser, Y. Lapatnikov, S. Margel and U. Richter, J. Magn. Magn. Mater. 270, 345 (2004).

    Article  ADS  Google Scholar 

  10. R. Hergt, S. Dutz and M. Röder, J. Phy. Conden. Matter 20, 385214 (2008).

    Article  ADS  Google Scholar 

  11. Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Korean Phys. Soc. 68, 587 (2016).

    Article  ADS  Google Scholar 

  12. F. Shubitidze, K. Kekalo, R. Stigliano and I. Baker, J. Appl. Phys. 117, 094302 (2015).

    Article  ADS  Google Scholar 

  13. T. Sato, T. Iijima, M. Seki and N. Inagaki, J. Magn. Magn. Mater. 65, 252 (1987).

    Article  ADS  Google Scholar 

  14. J. Jacob and M. A. Khadar, J. Appl. Phys. 107, 11 (2010).

    Article  Google Scholar 

  15. R. J. Brook and W. D. Kingery, J. Appl. Phys. 38, 3589 (1967).

    Article  ADS  Google Scholar 

  16. H. Shao, H. Lee, Y. Huang, I. Ko and C. Kim, IEEE Trans. Magn. 41, 3388 (2005).

    Article  ADS  Google Scholar 

  17. Z-X. Tang, D. Claveau, R. Corcuff, K. Belkacemi and J. Arul, Mater. Lett. 62, 2096 (2008).

    Article  Google Scholar 

  18. H-F. Zhang and Y-P. Shi, Curr. Anal. Chem. 8, 150 (2012).

    Article  Google Scholar 

  19. M. Menelaou, K. Georgoula, K. Simeonidis and C. Dendrinou-Samara, Dalton Trans. 43, 3626 (2014).

    Article  Google Scholar 

  20. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy and C. Muthamizhchelvan, Mater. Res. Bull. 46, 2204 (2011).

    Article  Google Scholar 

  21. K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu and J. L. Duan, J. Magn. Magn. Mater. 321, 1838 (2009).

    Article  ADS  Google Scholar 

  22. M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, J. Magn. Magn. Mater. 268, 33 (2004).

    Article  ADS  Google Scholar 

  23. Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 409, 80 (2016).

    Article  ADS  Google Scholar 

  24. A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).

    Article  ADS  Google Scholar 

  25. J. Dormann, L. Bessais and D. Fiorani, J. Phys. C: Solid State Phys. 21, 2015 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilsu Rhee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Bae, H. & Rhee, I. Cube-Shaped Cetyltrimethyl Ammonium Bromide-Coated Nickel Ferrite Nanoparticles for Hyperthermia Applications. J. Korean Phys. Soc. 73, 125–129 (2018). https://doi.org/10.3938/jkps.73.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.125

Keywords

Navigation