Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 826–834 | Cite as

A Data Assimilated Regional Ionosphere Model Using the Total Electron Content from the Korean GPS Network

  • Chalachew Kindie Mengist
  • Yong Ha Kim
  • Nicholas Ssessanga
  • Jeong-Heon Kim


In this study, we develop a time-dependent three-dimensional regional ionosphere model over the Korean peninsula (32° N - 42° N, 122° E - 132° E, and 100 - 1000 km in altitude) by using data assimilation technique. Slant total electron content (STEC) data from 80 global positioning system (GPS) receiver stations on the Korean peninsula are assimilated into International Reference Ionosphere (IRI) 2016 as a background model. The assimilated results are validated with independent sources of electron density information: 1) GPS STEC not used in the assimilation and 2) f o F2 and bottom side electron density profiles from two ionosondes. Results show that data assimilation estimates the observations with a 3 - 41% improvement over the climatic IRI 2016 model.


Ionosphere Data assimilation Slant total electron content Ionosonde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Bilitza, Ionospheric Models for Radio Propagation Studies, in the Review of radio Science 1999-2002 (IEEE Press, New Jersey, 2002), p. 625.Google Scholar
  2. [2]
    M. Pezzopane, M. Pietrella, A. Pignatelli, B. Zolesi and L. R. Cander, Radio Sci. 46, RS5009 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    J. J. Sojka, C. Smithtro and R. W. Schunk, Adv. Space Res. 37, 369 (2006).ADSCrossRefGoogle Scholar
  4. [4]
    D. Bilitza, D. Altadill, V. Truhlik, V. Shubin, I. Galkin, B. Reinisch and X. Huang, Space Weather 15, 418 (2017).ADSCrossRefGoogle Scholar
  5. [5]
    S. M. Radicella, Ann. Geophys. 52, 4 (2009).Google Scholar
  6. [6]
    F. Bouttier and P. Courtier, Data assimilation concepts and methods in European Centre for Medium-Range Weather Forecasts (1999).Google Scholar
  7. [7]
    E. Aa, S. Liu, W. Huang, L. Shi, J. Gong, Y. Chen, H. Shen and J. Li, Space Weather 14, 433 (2016).ADSCrossRefGoogle Scholar
  8. [8]
    G. S. Bust and S. Datta-Barua, Scientific Investigations Using IDA4D and EMPIRE, in Modeling the Ionosphere-Thermosphere System (Wiley, Chichester, 2014), p. 283.CrossRefGoogle Scholar
  9. [9]
    X. Pi, C. Wang, G. A. Hajj, G. Rosen, B. D. Wilson and G. J. Bailey, Geophys. Res.: Space Phys. 108, 1075 (2003).ADSCrossRefGoogle Scholar
  10. [10]
    C. Wang, G. Hajj, X. Pi, I. G. Rosen and B. Wilson, Radio Sci. 39, RS1S06 (2004).Google Scholar
  11. [11]
    B. M. Howe, K. Runciman and J. A. Secan, Radio Sci. 33, 109 (1998).ADSCrossRefGoogle Scholar
  12. [12]
    T. Gerzen, D. Minkwitz and S. Schlueter, Geophys. Res.: Space Phys. 120, 6901 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    C. Y. Lin, T. Matsuo, J. Y. Liu, C. H. Lin, H. F. Tsai and E. A. Araujo-Pradere, Atmos. Meas. Tech. 8, 171 (2015).CrossRefGoogle Scholar
  14. [14]
    T. Fuller-Rowell, E. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson and A. R. Jacobson, Radio Sci. 41, RS6003 (2006).ADSCrossRefGoogle Scholar
  15. [15]
    L. Scherliess, R. W. Schunk, J. J. Sojka and D. C. Thompson, Radio Sci. 39, RS1S04 (2004).CrossRefGoogle Scholar
  16. [16]
    L. Scherliess, R. W. Schunk, J. J. Sojka, D. C. Thompson and L. Zhu, Geophys. Res.: Space Phys. 111, A11315 (2006).ADSCrossRefGoogle Scholar
  17. [17]
    R. W. Schunk, L. Scherliess, J. J. Sojka, D. C. Thompson, D. N. Anderson, M. Codrescu, C. Minter, T. J. Fuller-Rowell, R. A. Heelis and M. Hairston, Radio Sci. 39, RS1S02 (2004).CrossRefGoogle Scholar
  18. [18]
    I. T. Lee, T. Matsuo, A. D. Richmond, J. Y. Liu, W. Wang, C. H. Lin, J. L. Anderson and M. Q. Chen, Geophys. Res.: Space Phys. 117, A10318 (2012).ADSCrossRefGoogle Scholar
  19. [19]
    X. Yue, W. S. Schreiner and Y-H. Kuo, Geophys. Res.: Space Phys. 117, A08301 (2012).ADSGoogle Scholar
  20. [20]
    X. Yue, W. S. Schreiner, Y-C. Lin, C. Rocken, Y-H. Kuo and B. Zhao, Geophys. Res.: Space Phys. 116, A03317 (2011).ADSCrossRefGoogle Scholar
  21. [21]
    X. Yue, W. Wan, L. Liu, F. Zheng, J. Lei, B. Zhao, G. Xu, S-R. Zhang and J. Zhu, Radio Sci. 42, RS6006 (2007).ADSCrossRefGoogle Scholar
  22. [22]
    G. S. Bust, T. W. Garner and T. L. Gaussiran, Geophys. Res.: Space Phys. 109, A11312 (2004).ADSCrossRefGoogle Scholar
  23. [23]
    G. S. Bust, C. Coker, D. S. Coco, T. L. Gaussiran Ii and T. Lauderdale, Adv. in Space Res. 27, 157 (2001).ADSCrossRefGoogle Scholar
  24. [24]
    G. S. Bust, G. Crowley, T. W. Garner, T. L. Gaussiran, R. W. Meggs, C. N. Mitchell, P. S. J. Spencer, P. Yin and B. Zapfe, Space Weather 5, S02003 (2007).ADSCrossRefGoogle Scholar
  25. [25]
    J. A. Klobuchar et al., Limitations in determining absolute total electron content from dual-frequency GPS group delay measurements (Beacon Satellite Symposium, Aberystwyth, 1994).Google Scholar
  26. [26]
    H. Kohl, R. Ruster and K. Schlegel, Modern Ionospheric Science (European Geophysical Society, Katlenburg-Lindau, 1996).Google Scholar
  27. [27]
    S. Schaer, Geod-Geophys. Arb. Schweiz 59, 59 (1999).Google Scholar
  28. [28]
    R. Daley, Atmospheric data analysis, Cambridge atmospheric and space science series (Cambridge University Press, New York, 1991), p. 457.Google Scholar
  29. [29]
    R. Daley and E. Barker, NAVDAS Source Book 2000: NRL Atmospheric Variational Data Assimilation System ( NRL, California, 2000), p. 146.CrossRefGoogle Scholar
  30. [30]
    E. Aa, W. Huang, S. Yu, S. Liu, L. Shi, J. Gong, Y. Chen and H. Shen, Geophys. Res.: Space Phys. 120, 2015JA021140 (2015).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Chalachew Kindie Mengist
    • 1
    • 2
  • Yong Ha Kim
    • 1
  • Nicholas Ssessanga
    • 1
  • Jeong-Heon Kim
    • 1
  1. 1.Department of Astronomy, Space and GeologyChungnam National UniversityDaejeonKorea
  2. 2.Department of PhysicsAdama Science and Technology UniversityAdamaEthiopia

Personalised recommendations