Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 780–785 | Cite as

Comparative Study of Cu2Te and Cu Back Contact in CdS/CdTe Solar Cell

  • Sangsu Kim
  • Jeehoon Jeon
  • Jonghee Suh
  • Jinki Hong
  • TaeYueb Kim
  • KiHyun Kim
  • ShinHaeng Cho


In CdS/CdTe solar cells, Cu is added during the formation of the metallic electrode to enhance the contact properties and achieve an appropriate hole concentration in the cadmium telluride (CdTe) layer. In this study, we added Cu to CdS/CdTe solar cells using two different electrode materials: metallic Cu and Cu2Te layers. They were deposited on the CdTe surface in the CdS/CdTe solar cells, and subsequent annealing was carried out to form a single-phase copper telluride compound. The devices made by these two materials were comparatively investigated in terms of their contact properties such as barrier height, hole density, and contact resistance. Most of the data indicate that the Cu2Te-deposited cell is superior to the Cu-deposited cell. Furthermore, we obtained an optimum annealing condition for the Cu2Te process, at which the cell performance is maximized. These results demonstrate the excellence of the Cu2Te material and provide practical information about the processing technique of this material.


CdS/CdTe Cu2Te Solar cell Copper telluride Barrier height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. M. Geisthardt, M. Topič and J. R. Sites, IEEE J. Photovolt. 5, 1217 (2015).CrossRefGoogle Scholar
  2. [2]
    A. Luque and S. Hegedus, (eds) Handbook of Photovoltaic Science and Engineering (Wiley, 2011), Chap. 13, p. 14.Google Scholar
  3. [3]
    L. Kranz et al., Nature Commun. 4, 2306 (2013).CrossRefGoogle Scholar
  4. [4]
    J. M. Burst et al., Nature Energy 1, 16015 (2016).ADSCrossRefGoogle Scholar
  5. [5]
    M. A. Green et al. Prog. Photovolt. 25, 3 (2017).CrossRefGoogle Scholar
  6. [6]
    A. Kanevce and T. A. Gessert, IEEE J. Photovolt. 1, 99 (2011).CrossRefGoogle Scholar
  7. [7]
    S. H. Demtsu and J. R. Sites, Thin Solid Films 510, 320 (2006).ADSCrossRefGoogle Scholar
  8. [8]
    H. Lin et al., Sol. Energy Mater. Sol. Cells 99, 349 (2012).CrossRefGoogle Scholar
  9. [9]
    U. V. Desnica, Prog. Crystal Growth Charact. Mater. 36, 291 (1998).CrossRefGoogle Scholar
  10. [10]
    X. Wu, Solar Energy 77, 803 (2004).ADSCrossRefGoogle Scholar
  11. [11]
    X. Wu et al., Thin Solid Films 515, 5798 (2007).ADSCrossRefGoogle Scholar
  12. [12]
    N. Romeo, A. Bosio, S. Mazzamuto, A. Romeo and L. Vaillant-Roca, Proc. 22nd EU Photovolt. Solar Energy Conf. (2007), p. 1919.Google Scholar
  13. [13]
    T. A. Gessert et al., Thin Solid Films 517, 2370 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    T. A. Gessert et al., Proc. 31st IEEE Photovolt. Specialists Conf. (2005), p. 291.Google Scholar
  15. [15]
    D. Ferizovič and M. Mu˜noz, Optical, Thin Solid Films 519, 6115 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    Y. Park et al., Thin Solid Films 546, 337 (2013).ADSCrossRefGoogle Scholar
  17. [17]
    Z. Bai, L. Wan, Z. Hou and D. Wang, Phys. Stat. Solidi C 8, 628 (2011).CrossRefGoogle Scholar
  18. [18]
    G. Stollwerck and J. R. Sites, Proc. 13th EU Photovolt. Solar Energy Conf. (1995), p. 2020.Google Scholar
  19. [19]
    S. M. Sze and M. K. Lee, Semiconductor Devices Physics and Technology, 3rd ed. (2012), p. 234.Google Scholar
  20. [20]
    G. T. Koishiyev, J. R. Sites, S. S. Kulkarni and N. G. Dhere, Proc. 33rd IEEE PVSC (2008).Google Scholar
  21. [21]
    A. Fahrenbruch, Proc. 33rd IEEE PVSC (2008), p. 2152.Google Scholar
  22. [22]
    J. R. Sites, Annual Report, Colorado State University (2002).Google Scholar
  23. [23]
    A. Romeo, D. L. Bätzner, H. Zogg and A. N. Tiwari, Proc. 16th EU Photovolt. Solar Energy Conf. (2000), p. 353.Google Scholar
  24. [24]
    O. I. Olusola, M. L. Madugu, A. A. Ojo and I. M. Dharmadasa, Current Appl. Phys. 17, 279 (2017).ADSCrossRefGoogle Scholar
  25. [25]
    A. A. Ojo, I. O. Olusola and I. M. Dharmadasa, Mater. Chem. Phys. 196, 229 (2017).CrossRefGoogle Scholar
  26. [26]
    S. Cho, S. Kim, M. Park, J. Suh and J. Hong, J. Korean Phys. Soc. 65, 1590 (2014).ADSCrossRefGoogle Scholar
  27. [27]
    K. Dieter, Semiconductor Material and Device Characterization, 3rd ed. (2006), p. 138.Google Scholar
  28. [28]
    B. Ghosh, Microelectronic Engineering 86, 2187 (2009).CrossRefGoogle Scholar
  29. [29]
    B. Lv et al., Jpn. J. Appl. Phys. 48, 085501 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Sangsu Kim
    • 1
  • Jeehoon Jeon
    • 1
  • Jonghee Suh
    • 1
  • Jinki Hong
    • 1
  • TaeYueb Kim
    • 2
  • KiHyun Kim
    • 3
  • ShinHaeng Cho
    • 4
  1. 1.Department of Display and Semiconductor PhysicsKorea UniversitySejongKorea
  2. 2.Center for Electricity & MagnetismKorea Research Institute of Standards and Science (KRISS)DaejeonKorea
  3. 3.Department of RadiologyKorea UniversitySeoulKorea
  4. 4.Proton Therapy CenterNational Cancer CenterGoyangKorea

Personalised recommendations