Skip to main content
Log in

Numerical Analysis on the Electrical and Thermal Flow Characteristics of Ar-N2 Inductively Coupled Plasma Torch System

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Numerical analysis on the electrical and thermal flow characteristics of Ar-N2 inductively coupled plasma (ICP) were carried out for N2 content from 0 to 50 mol% at plasma power level of 50 kW. Firstly, the computational results of thermal flow fields revealed that the addition of N2 could reduce the radiation heat loss, together with increasing the exit enthalpy. For example, the radiation heat loss of Ar-N2 ICP with N2 content of 20 mol% is reduced by ∼ 33%, compared with that of Ar-only ICP, which are essential for the safe operation of an ICP system at the high power level of 50 kW. In addition, the increase of N2 content was also found to increase the load resistance of a tank circuit for a vacuum tube oscillator. Equivalent circuit analysis using the numerical results shows that this increase of the load resistance comes from the increasing equivalent resistance and the decreasing equivalent inductance of Ar-N2 ICP, corresponding to the changes of thermal flow fields with the increase of N2 content. For a tank circuit consisting of a capacitor and an inductor with a capacitance of 6,500 pF, and an equivalent inductance of 0.84 μH, the load resistance was calculated to be increased from 81 Ω for Ar only ICP to 130 Ω for Ar-N2 ICP with N2 content of 20 mol%. Considering the internal resistances of high power vacuum tubes higher than 130 Ω, this increase of load resistance clearly shows that N2 addition can improve the impedance mismatching of an ICP torch system with a vacuum tube oscillator having no variable part to tune the load resistance. By providing these basic data for the calculation of load resistance and thermal flow characteristics, the numerical analysis combined with equivalent circuit analysis used in this work can help in designing and operating a high-powered ICP torch system with a vacuum tube oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. L. Girshick, C. P. Chiu and P. H. McMurry, Plasma Chem. Plasma Process. 8, 145 (1988).

    Article  Google Scholar 

  2. M. Shigeta, T. Watanabe and H. Nishiyama, Thin Solid Films 457, 192 (2004).

    Article  ADS  Google Scholar 

  3. N. Y. M. Gonzalez, M. E. Morsli and P. Proulx, J. Therm. Spray Technol. 17, 533 (2008).

    Article  ADS  Google Scholar 

  4. M. Y. Lee, J. S. Kim and J. H. Seo, Thin Solid Films 521, 60 (2012).

    Article  ADS  Google Scholar 

  5. J. H. Seo and B. G. Hong, Nucl. Eng. Technol. 44, 9 (2012).

    Article  Google Scholar 

  6. S. B. Punjabi, N. K. Joshi, H. A. Mangalvedekar, B. K. Lande, A. K. Das and D. C. Kothari, Phys. Plasmas 19, 012108 (2012).

    Article  ADS  Google Scholar 

  7. H. Nishiyama, T. Sato, S. Ito, T. Sato and S. Kamiyama, Heat Mass Transf. 36, 433 (2000).

    Article  ADS  Google Scholar 

  8. M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas: Fundamentals and Applications (Plenum Press, NewYork and London, 1994), Vol. 1.

  9. S. Seely, Radio Electronics (McGraw-Hill Book Company, New York, 1956).

    Google Scholar 

  10. W. A. Edson, Vacuum-tube oscillators (John Willy & Sons, Inc., New York, 1953).

    Google Scholar 

  11. J. Kim, J. Mostaghimi and R. Iravani, IEEE Trans. Plasma Sci. 25, 1023 (1997).

    Article  ADS  Google Scholar 

  12. M. P. Freeman and J. D. Chase, J. Appl. Phys. 39, 180 (1968).

    Article  ADS  Google Scholar 

  13. M. I. Boulos, Pure & Appl. Chem. 57, 1321 (1985).

    Article  Google Scholar 

  14. www.thalesgroup.com, in catalogue of ITK 60-2 watercooled triode for industrial RF heating.

  15. S. V. Patankar, Computational Fluid Flow and Heat Transfer (McGraw-Hill, New-York, 1980).

    MATH  Google Scholar 

  16. P. Proulx, J. Mostaghimi and M. I. Boulos, Plasma Chem. Plasma Process. 7, 29 (1987).

    Article  Google Scholar 

  17. A. Chentouf, J. Fouladgar and G. Develey, IEEE Trans. Mag. 31, 2100 (1995).

    Article  ADS  Google Scholar 

  18. A. Merkhouf and M. I. Boulos, Plasma Sources Sci. Technol. 7, 599 (1998).

    Article  ADS  Google Scholar 

  19. A. Merkhouf and M. I. Boulos, J. Phys. D: Appl. Phys. 33, 1581 (2000).

    Article  ADS  Google Scholar 

  20. J. H. Seo, J. M. Park and S. H. Hong, J. Korean Phys. Soc 54, 94 (2009).

    Article  ADS  Google Scholar 

  21. G. Herdrich, M. Dropmann, T. Marynowski, S. Lohle and S. Fasoulas, in Proceedings of the 7th International Planetary Probe Workshop (Barcelona, Spain, June 2010).

    Google Scholar 

  22. R. K. Dewangan, S. B. Punjabi, N. K. Joshi, D. N. Barve, H. A. Mangalvedekar and B. K. Lande, J. Phys. Conf. Ser. 208, 012056 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, JS., Lee, MY., Seo, JH. et al. Numerical Analysis on the Electrical and Thermal Flow Characteristics of Ar-N2 Inductively Coupled Plasma Torch System. J. Korean Phys. Soc. 72, 755–764 (2018). https://doi.org/10.3938/jkps.72.755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.755

Keywords

Navigation