Skip to main content
Log in

Nuclear Matter Under Extreme Conditions: from Quark-Gluon Plasma to Neutron Stars

  • Overview Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Most of the mass in the Universe is dynamically generated by the strong interaction that can be described by the Quantum Chromodynamics (QCD) in the present Standard Model. However, QCD works only in the limit of asymptotic freedom with small coupling constant at high energies. When the two heavy ions collide each other at high energies, very dense quark-gluon matter (the so-called quark-gluon plasma or QGP) is formed, and QCD cannot properly describe the dynamics in QGP at present. Another major trend in the contemporary QCD research is to explore the neutron-rich nuclear matter produced by the radioactive ion beams. Such an abnormal state of the strongly interacting matter is conjectured to be the core of the neutron star. The dense neutron-rich matter is expected to be the ground of the various exotic phenomena like kaon condensation. Understanding the structure and the dynamics of the neutron matter is one of the major research topics in not only nuclear physics but also astrophysics. In this review, the status and future perspectives of the research on nuclear matter under extreme conditions are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Müller, arXiv:nucl-th/0404015.

  2. D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

    Article  ADS  Google Scholar 

  3. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

    Article  ADS  Google Scholar 

  4. G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).

    Article  ADS  Google Scholar 

  5. H. Bohr and H. B. Nielsen, Nucl. Phys. B 128, 275 (1977).

    Article  ADS  Google Scholar 

  6. E. V. Shuryak, Phys. Lett. B 78, 150 (1978).

    Article  ADS  Google Scholar 

  7. I. Arsene et al., BRAHMS Collaboration, Nucl. Phys. A 757, 1 (2005).

    Article  ADS  Google Scholar 

  8. K. Adcox et al., PHENIX Collaboration, Nucl. Phys. A 757, 184 (2005).

    Article  ADS  Google Scholar 

  9. B. B. Back et al., PHOBOS Collaboration, Nucl. Phys. A 757, 28 (2005).

    Article  ADS  Google Scholar 

  10. J. Adams et al., STAR Collaboration, Nucl. Phys. A 757, 102 (2005).

    Article  ADS  Google Scholar 

  11. A. Timmins for the ALICE Collaboration, Nucl. Phys. A 967, 43 (2017).

    Article  ADS  Google Scholar 

  12. J. Jia for the ATLAS Collaboration, Nucl. Phys. A 967, 51 (2017).

    Article  ADS  Google Scholar 

  13. B. Hong for the CMS Collaboration, Nucl. Phys. A 956, 27 (2016).

    Article  ADS  Google Scholar 

  14. J. Schukraft, Nucl. Phys. A 967, 1 (2017).

    Article  ADS  Google Scholar 

  15. M. Baldo and G. F. Burgio, arXiv:1606.08838.

  16. P. Danielewicz, R. Lacey and W. G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  17. H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

    Article  ADS  Google Scholar 

  18. C. F. von Weisäcker, Z. Physik 96, 431 (1935).

    Article  ADS  Google Scholar 

  19. B. A. Li, L. W. Chen and C. M. Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  20. R. Shane et al., Nucl. Instrum. Meth. A 784, 513 (2015).

    Article  ADS  Google Scholar 

  21. G. Jhang et al., SπRIT Collaboration, J. Korean Phys. Soc 69, 144 (2016).

    Article  ADS  Google Scholar 

  22. V. G. Bornyakov, D. L. Boyda, V. A. Goy, H. Iida, A. V. Molochkov, A. Nakamura, A. A. Nikolaev, V. I. Zakharov and M. Wakayama, arXiv:1712.02830.

  23. P. Huovinen and P. Petreczky, arXiv:1106.6227.

  24. P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005).

    Article  ADS  Google Scholar 

  25. R. Baier, A. H. Mueller, D. Schiff and D. T. Son, Phys. Lett. B 502, 51 (2001).

    Article  ADS  Google Scholar 

  26. D. Molnar and M. Gyulassy, Nucl. Phys. A 697, 495 (2002).

    Article  ADS  Google Scholar 

  27. S. Chatrchyan et al., CMS Collaboration, J. High Energy Phys. 09, 091 (2010).

    Google Scholar 

  28. S. Chatrchyan et al., CMS Collaboration, Phys. Lett. B 765, 193 (2017).

    ADS  Google Scholar 

  29. S. Chatrchyan et al., CMS Collaboration, Phys. Rev. Lett. 109, 022301 (2012).

    Article  ADS  Google Scholar 

  30. B. I. Abelev et al., STAR Collaboration, Phys. Rev. C 75, 054906 (2007).

    Article  ADS  Google Scholar 

  31. K. Adcox et al., PHENIX Collaboration, Phys. Rev. Lett. 88, 022301 (2002).

    Article  ADS  Google Scholar 

  32. C. Adler et al., STAR Collaboration, Phys. Rev. Lett. 90, 032301 (2003).

    Article  ADS  Google Scholar 

  33. S. Chatrchyan et al., CMS Collaboration, J. High Energy Phys. 02, 156 (2016).

    ADS  Google Scholar 

  34. S. Chatrchyan et al., CMS Collaboration, arXiv: 1801.04895.

  35. S. Chatrchyan et al., CMS Collaboration, arXiv: 1711.09738.

  36. S. Chatrchyan et al., CMS Collaboration, Phys. Rev. Lett. 119, 082301 (2017).

    Article  ADS  Google Scholar 

  37. T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).

    Article  ADS  Google Scholar 

  38. M. Gonin for the NA50 Collaboration, Nucl. Phys. A 610, 404c (1996).

  39. A. Adare et al., PHENIX Collaboration, Phys. Rev. Lett. 98, 232301 (2007).

    Article  ADS  Google Scholar 

  40. J. Adams et al., ALICE Collaboration, Phys. Rev. Lett. 116, 222301 (2016).

    Article  ADS  Google Scholar 

  41. L. Yan, P. Zhuang and N. Xu, Phys. Rev. Lett. 97, 232301 (2006).

    Article  ADS  Google Scholar 

  42. R. L. Thews, Eur. Phys. J. A 29, 15 (2006).

    Article  ADS  Google Scholar 

  43. S. Chatrchyan et al., CMS Collaboration, Phys. Rev. Lett. 109, 222301 (2012).

    Article  ADS  Google Scholar 

  44. D. E. Kharzeev, J. Liao, S. A. Voloshin and G. Wang, arXiv:1511.04050.

  45. D. E. Kharzeev and H. U. Yee, Phys. Rev. D 83, 085007 (2011).

    Article  ADS  Google Scholar 

  46. L. Adamczyk et al., STAR Collaboration, Phys. Rev. Lett. 114, 252302 (2015).

    Article  ADS  Google Scholar 

  47. B. Abelev et al., ALICE Collaboration, Phys. Rev. Lett. 110, 012301 (2013).

    Article  ADS  Google Scholar 

  48. V. Khachatryan et al., CMS Collaboration, Phys. Rev. Lett. 118, 122301 (2017).

    Article  ADS  Google Scholar 

  49. V. Khachatryan et al., CMS Collaboration, arXiv: 1708.08901.

  50. B. Hong, J. Korean Phys. Soc. 71, 77 (2017).

    Article  ADS  Google Scholar 

  51. A. W. Steiner, M. Prakash, J. M. Lattimer and P. J. Ellis, Phys. Rep. 411, 325 (2005).

    Article  ADS  Google Scholar 

  52. P. Danielewicz, Nucl. Phys. A 727, 233 (2003).

    Article  ADS  Google Scholar 

  53. https://doi.org/www.fair-center.eu/.

  54. https://doi.org/frib.msu.edu/.

  55. M. B. Tsang et al., Phys. Rev. C 86, 015803 (2012).

    Article  ADS  Google Scholar 

  56. F. Rami et al., FOPI Collaboration, Phys. Rev. Lett. 84, 1120 (2000).

    Article  ADS  Google Scholar 

  57. B. Hong et al., FOPI Collaboration, Phys. Rev. C 66, 034901 (2002).

    Article  ADS  Google Scholar 

  58. B. Hong for the FOPI Collaboration, Nucl. Phys. A 721, 317c (2003).

    Google Scholar 

  59. M. B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).

    Article  ADS  Google Scholar 

  60. J. Rizzo et al., Nucl. Phys. A 806, 79 (2008).

    Article  ADS  Google Scholar 

  61. Z. Y. Sun et al., Phys. Rev. C 82, 051603 (2001).

    Article  ADS  Google Scholar 

  62. A. Andronic et al., FOPI Collaboration, Phys. Lett. B 612, 173 (2005).

    Article  ADS  Google Scholar 

  63. Z. Kohley et al., Phys. Rev. C 83, 044601 (2011).

    Article  ADS  Google Scholar 

  64. Z. Kohley et al., Phys. Rev. C 82, 064601 (2010).

    Article  ADS  Google Scholar 

  65. P. Russotto et al., Phys. Rev. C 94, 034608 (2016).

    Article  ADS  Google Scholar 

  66. L. Trippa, G. Colo and E. Vigezzi, Phys. Rev. C 77, 061304 (2008).

    Article  ADS  Google Scholar 

  67. A. Klimkiewicz et al., Phys. Rev. C 76, 051603 (2017).

    Article  ADS  Google Scholar 

  68. A. Carbone et al., Phys. Rev. C 81, 041301 (2010).

    Article  ADS  Google Scholar 

  69. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009).

    Article  ADS  Google Scholar 

  70. C. J. Horowitz, Eur. Phys. J. A 30, 303 (2006).

    Article  ADS  Google Scholar 

  71. S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).

    Article  ADS  Google Scholar 

  72. J. Zenihiro et al., Phys. Rev. C 82, 044611 (2010).

    Article  ADS  Google Scholar 

  73. B. A. Li, Phys. Rev. Lett. 88, 192701 (2002).

    Article  ADS  Google Scholar 

  74. R. Stock, Phys. Rep. 135, 259 (1986).

    Article  ADS  Google Scholar 

  75. B. Hong et al., FOPI Collaboration, Phys. Lett. B 407, 115 (1997).

    Article  ADS  Google Scholar 

  76. W. Reisdorf et al., FOPI Collaboration, Nucl. Phys. A 781, 459 (2007).

    Article  ADS  Google Scholar 

  77. B. Hong et al., FOPI Collaboration, Phys. Rev. C 71, 034902 (2005).

    Article  ADS  Google Scholar 

  78. B. Hong et al., FOPI Collaboration, Phys. Rev. C 57, 244 (1998).

    Article  ADS  Google Scholar 

  79. Z. Xiao, B-A. Li, L-W. Chen, G-C. Yang and M. Zhang, Phys. Rev. Lett. 102, 062502 (2009).

    Article  ADS  Google Scholar 

  80. A. Adare et al., sPHENIX Collaboration, arXiv: 1501.06197.

  81. B. Hong et al., Eur. Phys. J. A 50, 49 (2014).

    Article  ADS  Google Scholar 

  82. B. Hong, Nucl. Sci. Tech. 26, S20505 (2015).

    Google Scholar 

  83. K. Lee et al., J. Korean Phys. Soc. 65, 610 (2014).

    Article  ADS  Google Scholar 

  84. G. Jhang et al., J. Korean Phys. Soc. 68, 645 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungsik Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, B. Nuclear Matter Under Extreme Conditions: from Quark-Gluon Plasma to Neutron Stars. J. Korean Phys. Soc. 72, 1515–1522 (2018). https://doi.org/10.3938/jkps.72.1515

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1515

Keywords

Navigation