Skip to main content
Log in

Use of Graphene for Solar Cells

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In the last decade, graphene has been spotlighted as one of the novel materials for transparent conductive electrodes (TCEs) of solar cells. This paper provides an overview of recent progress for the application of graphene TCEs in solar cells employing representative active materials. This review focuses especially on the structure and characteristics of solar cells employing three majorgroup materials: Si-based materials (crystalline Si, porous Si, Si nanowire, and Si quantum dots), compound (CdTe and GaAs) thin films; organic and perovskite materials. The graphene TCEs are very promising for producing high-efficiency solar cells, but their stabilities are a key issue to overcome for the practical applications. The significance and outlook of the graphene-TCE-based solar cells are finally summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A Green, Semicond. Sci. Technol. 8, 1 (1993).

    ADS  Google Scholar 

  2. J. Hupkes et al., Sol. Energy Mater. Sol. Cells 90, 3054 (2006).

    Google Scholar 

  3. J. Li, H. Y. Yu and Y Li, Nanoscale 3, 4888 (2011).

    ADS  Google Scholar 

  4. B-R. Huang, Y-K. Yang and W-L. Yang, Nanotechnology 25, 035401 (2014).

    ADS  Google Scholar 

  5. J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993).

    ADS  Google Scholar 

  6. I. Repins et al., Prog. Photovolt.: Res. Appl. 16, 235 (2008).

    Google Scholar 

  7. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    ADS  Google Scholar 

  8. B. O’Regan and M. Gratzel, Nature 353, 737 (1991).

    ADS  Google Scholar 

  9. J. J. M. Halls et al., Nature 376, 498 (1995).

    ADS  Google Scholar 

  10. R. W. Miles, G. Zoppi and Ian Forbes, Mater. Today 10, 21 (2007).

    Google Scholar 

  11. S. P. Singh et al., Adv. Funct. Mater. 22, 4087 (2012).

    Google Scholar 

  12. S. P. Singh et al., J. Phys. Chem. C 116, 5941 (2012).

    Google Scholar 

  13. Q. Xue et al., RSC Adv. 5, 775 (2015).

    Google Scholar 

  14. J. Bullock et al., Sci. Rep. 7, 9085 (2017).

    ADS  Google Scholar 

  15. A. Ingenito et al., Sol. PRL 1, 1700040 (2017).

    Google Scholar 

  16. B. J. Kim et al., Energy Environ. Sci. 8, 916 (2015).

    Google Scholar 

  17. S. W. Seo et al., Nanotechnology 28, 425203 (2017).

    Google Scholar 

  18. D. Angmo and F. C. Krebs, J. Appl. Polym. Sci. 129, 1 (2013).

    Google Scholar 

  19. F. Basarir et al., Mater. Today Chem. 3, 60 (2017).

    Google Scholar 

  20. S. Bae et al., Nat. Nanotech. 5, 574 (2010).

    ADS  Google Scholar 

  21. J. Wu et al., Appl. Phys. Lett. 92, 263302 (2008).

    ADS  Google Scholar 

  22. D. H. Shin et al., Adv. Mater. 27, 2614 (2015).

    Google Scholar 

  23. L. Yang et al., ACS Appl. Mater. Interfaces 7, 4135 (2015).

    Google Scholar 

  24. L. D’Arsie et al., RSC Adv. 6, 113185 (2016).

    Google Scholar 

  25. K. C. Kwon, K. S. Choi and S. Y. Kim, Adv. Funct. Mater. 22, 4724 (2012).

    Google Scholar 

  26. D. H. Shin et al., J. Appl. Phys. 123, 123101 (2018).

    ADS  Google Scholar 

  27. C. W. Jang et al., J. Alloys Compd. 621, 1 (2015).

    Google Scholar 

  28. J. S. Kim et al., Adv. Mater. 28, 4803 (2016).

    Google Scholar 

  29. X. Miao et al., Nano Lett. 12, 2745 (2012).

    ADS  Google Scholar 

  30. D. L. Duong et al., Phys. Rev. B 85, 205413 (2012).

    ADS  Google Scholar 

  31. D. H. Shin et al., Nanotechnology 25, 125701 (2014).

    ADS  Google Scholar 

  32. S. Kim et al., ACS Nano 7, 5168 (2013).

    Google Scholar 

  33. H-J. Shin et al., J. Am. Chem. Soc. 132, 15603 (2010).

    Google Scholar 

  34. D. H. Shin et al., J. Alloy. Compd. 726, 1047 (2017).

    Google Scholar 

  35. J. M. Kim et al., Nano Energy 43, 124 (2018).

    Google Scholar 

  36. D. H. Shin et al., Appl. Surf. Sci. 433, 181 (2018).

    ADS  Google Scholar 

  37. Y. Kim et al., ACS Nano 8, 868 (2014).

    Google Scholar 

  38. S. De and J. N. Coleman, ACS Nano 4, 2713 (2010).

    Google Scholar 

  39. L. Gao et al., Appl. Phys. Lett. 97, 183109 (2010).

    ADS  Google Scholar 

  40. W. Bao et al., Nat. Commun. 5, 4224 (2014).

    Google Scholar 

  41. X. Li et al., Adv. Mater. 22, 2743 (2010).

    Google Scholar 

  42. Y. Tsuboi et al., Nanoscale 7, 14476 (2015).

    ADS  Google Scholar 

  43. T. Cui et al., J. Mater. Chem. A 1, 5736 (2013).

    Google Scholar 

  44. S. Das et al., J. Mater. Chem. 22, 20490 (2012).

    Google Scholar 

  45. J. Zhao et al., Appl. Surf. Sci. 434, 102 (1993).

    ADS  Google Scholar 

  46. E. Shi et al., Nano Lett. 13, 1776 (2013).

    ADS  Google Scholar 

  47. X. Liu et al., Appl. Phys. Lett. 105, 183901 (2014).

    ADS  Google Scholar 

  48. X. Liu et al., Appl. Phys. Lett. 106, 233901 (2015).

    ADS  Google Scholar 

  49. X. Li et al., Nanoscale 65, 1945 (2013).

    ADS  Google Scholar 

  50. Y. F. Li et al., Appl. Phys. Lett. 104, 043903 (2014).

    ADS  Google Scholar 

  51. S. Diao et al., Nano Energy 31, 359 (2017).

    Google Scholar 

  52. Y. Lin et al., Energy Environ. Sci. 6, 108 (2013).

    Google Scholar 

  53. J. M. Kim et al., Curr. Appl. Phys. 17, 1136 (2017).

    ADS  Google Scholar 

  54. B. Bari et al., J. Mater. Chem. A 4, 11365 (2016).

    Google Scholar 

  55. Q. Xue et al., Nanoscale Res. Lett. 12, 480 (2017).

    ADS  Google Scholar 

  56. C. Xie et al., J. Mater. Chem. A 1, 15348 (2013).

    Google Scholar 

  57. W. J. Aziz et al., Optik 122, 1462 (2011).

    ADS  Google Scholar 

  58. V. M. Aroutiouniana, Kh. S. Martirosyana, A. S. Hovhannisyana and P. G. Soukiassian, J. Contemp. Phys. 43, 72 (2008).

    Google Scholar 

  59. P. Menna, G. Di Francia and V. La Ferrara, Sol. Energy. Mater. Sol. Cells 37, 13 (1995).

    Google Scholar 

  60. C. R. B. Miranda, M. R. Baldan, A. F. Beloto and N. G. Ferreira, J. Braz. Chem. Soc. 19, 769 (2008).

    Google Scholar 

  61. D. H. Shin et al., J. Alloy. Compd. 715, 291 (2017).

    Google Scholar 

  62. J. H. Kim et al., J. Mater. Chem. C 5, 9005 (2017).

    Google Scholar 

  63. K. Peng et al., Small 11, 1062 (2005).

    Google Scholar 

  64. V. Sivakov et al., Nano Lett. 9, 1549 (2009).

    ADS  Google Scholar 

  65. G. Fan et al., ACS Appl. Mater. Interfaces 3, 721 (2011).

    Google Scholar 

  66. X. Zhang et al., J. Mater. Chem. A 1, 6593 (2013).

    ADS  Google Scholar 

  67. L. Pavesi et al., Nature 408, 440 (2000).

    ADS  Google Scholar 

  68. Y. Duan, J. F. Kong and W. Z. Shen, J. Raman Spectrosc. 43, 756 (2012).

    ADS  Google Scholar 

  69. E-C. Cho et al., Nanotechnology 19, 245201 (2008).

    ADS  Google Scholar 

  70. S. Park, E. Cho, X. Hao, G. Conibeer and M. A. Green, in Proceedings of the 2008 Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD’08) (Sydney, July 28 - August 1, 2008), p. 316.

    Google Scholar 

  71. S. H. Hong et al., Appl. Phys. Lett. 97, 072108 (2010).

    ADS  Google Scholar 

  72. S. H. Hong et al., Nanotechnology 22, 425203 (2011).

    Google Scholar 

  73. S. H. Lee, G. Y. Kwak, S. Hong, C. Kim, S. Kim, A. Kim and K. J. Kim, Nanotechnology 28, 035402 (2017).

    ADS  Google Scholar 

  74. T. Saga, NPG Asia Mater. 2, 96 (2010).

    Google Scholar 

  75. T. Lin, F. Huang, J. Liang and Y. Wang Energy Environ. Sci. 4, 862 (2011).

    Google Scholar 

  76. H. Bi et al., Adv. Mater. 23, 3202 (2011).

    Google Scholar 

  77. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

    ADS  Google Scholar 

  78. V. N. Vorobev and Y. F. Sokolov, Sov. Phys. Semicond. 5, 616 (1971).

    Google Scholar 

  79. W. Jie, F. Zheng and J. Hao, Appl. Phys. Lett. 103, 233111 (2013).

    ADS  Google Scholar 

  80. X. Li et al., Nano Energy. 16, 310 (2015).

    Google Scholar 

  81. H. Cao et al., J. Power Sources 264, 168 (2014).

    ADS  Google Scholar 

  82. Z. AL-Busaidi, C. Pearson, C. Groves and M. C. Petty, Sol. Energy Mater. Sol. Cells 160, 101 (2017).

    Google Scholar 

  83. Y. Galagan et al., Sol. Energy Mater. Sol. Cells 95, 1339 (2011).

    Google Scholar 

  84. K. Li et al., Adv. Mater. 26, 7271 (2014).

    ADS  Google Scholar 

  85. S-I. Na, S-S. Kim, J. Jo and D-Y. Kim, Adv. Mater. 20, 4061 (2008).

    Google Scholar 

  86. K. Sakamoto et al., Sci. Rep. 8, 2825 (2018).

    ADS  Google Scholar 

  87. L. G. D. Arco et al., ACS Nano 4, 2865 (2010).

    Google Scholar 

  88. Z. Liu, J. Li and F. Yan, Adv. Mater. 25, 4296 (2013).

    Google Scholar 

  89. S. Lee et al., Nanotechnology 23, 344013 (2012).

    Google Scholar 

  90. K-W. Seo et al., J Vac. Sci. Technol. A 32, 061201 (2014).

    Google Scholar 

  91. D. H. Shin et al., J. Alloy. Compd. 744, 1 (2018).

    Google Scholar 

  92. H. Park et al., Nano Lett. 14, 5148 (2014).

    ADS  Google Scholar 

  93. Y. Song, S. Chang, S. Gradecak and J. Kong, Adv. Energy Mater. 6, 1600847 (2016).

    Google Scholar 

  94. D. H. Shin et al., ACS Appl. Mater. Interfaces 10, 3596 (2018).

    Google Scholar 

  95. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Google Scholar 

  96. J-H. Im et al., Nanoscale 3, 4088 (2011).

    ADS  Google Scholar 

  97. H-S. Kim et al., Sci. Rep. 2, 591 (2012).

    Google Scholar 

  98. M. M. Lee et al., Science. 338, 643 (2012).

    ADS  Google Scholar 

  99. W. S. Yang et al., Science. 348, 1234 (2015).

    ADS  Google Scholar 

  100. B. J. Kim et al., Energy Environ. Sci. 8, 916 (2015).

    Google Scholar 

  101. Y. Li et al., Nat. Commun. 7, 10214 (2016).

    ADS  Google Scholar 

  102. P. Docampo et al., Nat. Commun. 4, 2761 (2013).

    Google Scholar 

  103. J-H. Im et al., Nat. Nanotechnol. 9, 927 (2014).

    ADS  Google Scholar 

  104. J. H. Heo et al., Nat. Photonics 7, 486 (2013).

    ADS  Google Scholar 

  105. C. R-Carmona et al., Energy Environ. Sci. 7, 994 (2014).

    Google Scholar 

  106. F. Lang et al., J. Phys. Chem. Lett. 6, 2745 (2015).

    Google Scholar 

  107. K. Yan et al., Small. 11, 2269 (2015).

    Google Scholar 

  108. P. You, Z. Liu, Q. Tai, S. Liu and F. Yan, Adv. Mater. 27, 3632 (2015).

    Google Scholar 

  109. H. Sung et al., Adv. Energy Mater. 6, 1501873 (2016).

    Google Scholar 

  110. J. H. Heo et al., Chem. Eng. J. 323, 153 (2017).

    Google Scholar 

  111. C. Rold’an-Carmona et al., Energy Environ. Sci. 7, 994 (2014).

    Google Scholar 

  112. I. Jeon et al., Nano Lett. 15, 6665 (2015).

    ADS  Google Scholar 

  113. J. Yoon et al., Energy Environ. Sci. 10, 337 (2017).

    Google Scholar 

  114. S. Kim et al., J. Alloy. Compd. 744, 404 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.H., Choi, SH. Use of Graphene for Solar Cells. J. Korean Phys. Soc. 72, 1442–1453 (2018). https://doi.org/10.3938/jkps.72.1442

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1442

Keywords

Navigation