Skip to main content
Log in

Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The effect of cooling rate on the microstructure evolution of liquid Cu nanoparticles during their solidification process is investigated by using a molecular dynamics simulation based on the embedded atom method (EAM) potential developed by Foiles et al.. The potential energy analysis, the pair distribution function and the common neighbor analysis have been used. The results show that the solidification point increases with decreasing cooling rate and that the solidification of the microstructure of Cu nanoparticles varies with the cooling rate. The microstructure consists of fcc, hcp and bcc crystals or mixtures, though the fcc structure dominates, except in the amorphous state. An amorphous structure was obtained when the cooling rate reached 1.0 × 1013 K/s or higher while crystallization degree increased with decreasing cooling rate, and the total content of crystal structures reached to 95% when the cooling rate dropped to 4.0 × 1011 K/s, which was nearly a perfect crystal structure. The results also indicate that a single-crystal nanoparticle will not be obtained by quenching the liquid metal under various cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nishimura and N. Miyazaki, Comput. Mater. Sci. 31, 269 (2004).

    Article  Google Scholar 

  2. X. G. Zeng, S. S. Xu, H. Y. Chen and J. L. Li, Trans. Nonferrous Met. Soc. China 20, S519 (2010).

    Article  Google Scholar 

  3. Z. W. Cui, Y. Sun and J. M. Qu, Solid State Ionics 226, 24 (2012).

    Article  Google Scholar 

  4. Z. W. Cui, F. Gao, Z. H. Cui and J.M. Qu, J. Power Sour. 207, 150 (2012).

    Article  Google Scholar 

  5. K. Y. Chen, H. B. Liu, X. P. Li, Q. Y. Han and Z. Q. Hu, J. Phys.: Condens Matter 7, 2379 (1995).

    Article  Google Scholar 

  6. Q. Yue, C. Tahir, K. Yoshitakes and W. A. Goddard, Phys. Rev. B 59, 3527 (1999).

    Article  Google Scholar 

  7. C. S. Liu, Z. G. Zhu, J. C. Xia and D. Y. Sun, Chinese Phys. Lett. 17, 34 (2000).

    Article  ADS  Google Scholar 

  8. H. Li, G. H. Wang, X. F. Blan and F. Ding, Phys. Rev. B 65, 035411 (2003).

    Google Scholar 

  9. K. J. Dong, R. S. Liu, A. B. Yu, R. P. Zou and J. Y. Li, J. Phys.: Condens Matter 15, 743 (2003).

    Article  ADS  Google Scholar 

  10. G. R. Zhou and Q. M. GAO, Solid state commun. 136, (32) 2005.

  11. F. Li, X. J. Liu, H. Y. Hou, G. Chen and G. L. Chen, Intermetallics 19, 630 (2011).

    Article  Google Scholar 

  12. Y. Shibuta and T. Suzuki, Chem.Phys. Lett. 502, 82 (2011).

    Article  ADS  Google Scholar 

  13. L. Wang, X. F. Bian and H. Li, Chinese J. Chem. Phys. 13, 544 (2000).

    Google Scholar 

  14. C. S. Liu, J. Xia, Z. G. Zhu and D. Y. Sun, J. Chem. Phys. 114, 7506 (2001).

    Article  ADS  Google Scholar 

  15. T. Zhang, X. R. Zhan, G. Guan, Y. H. Qi and C. Y. XU, Acta Metal. Sin. 40, 251 (2004).

    Google Scholar 

  16. X. H. Yi, R. S. Liu, Z. A. Tian, Z. Y. Hou, X. Y. Li and Q. Y. Zhou, Trans. Nonferrous Met. Soc. China 18, 33 (2008).

    Article  Google Scholar 

  17. H. Pang, Z. H. Jin and K. Lu, Phys. Rev. B 67, 0941131 (2003).

    Article  Google Scholar 

  18. F. F. Chen, H. F. Zhang, F. X. Qin and Z. Q. Hu, J. Chem. Phys. 120, 1826 (2004).

    Article  ADS  Google Scholar 

  19. T. Zhang, X. R. Zhang and S. L. Ding, Chinese J. At. Mol. Phys. 20, 357 (2003).

    MathSciNet  ADS  Google Scholar 

  20. S. M. Foiles, M. Baskes and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  ADS  Google Scholar 

  21. S. J. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  22. Information on http://lammps.sandia.gov.

  23. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  24. Hoover, Phys. Rev. A 34, 499 (1986).

    Article  MathSciNet  Google Scholar 

  25. M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1987).

    MATH  Google Scholar 

  26. Y. Waseda, The structure of non-crystalline materials (McGraw-Hill, New York, 1980).

    Google Scholar 

  27. W. Jin, R. K. Kalla, P. Vashishta and J. P. Rino, Phys. Rev. B 50, 118 (1994).

    Article  ADS  Google Scholar 

  28. Y. Waseda, The Structure of Non-Crystalline Materials, Liquid, and Amorphous (McGraw-Hill, New York, 1980).

    Google Scholar 

  29. J. D. Honeycutt and H. C. Andersen, J.Phys. Chem. 91, 4950 (1987).

    Article  Google Scholar 

  30. H. Tuzuki, P. S. Branicio and J. P. Rino, Comput. Phys. Commun. 177, 518 (2007).

    Article  ADS  Google Scholar 

  31. D. Faken, H. Jonsson, Comput. Mater. Sci. 2, 279 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Quan Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, YQ., Zeng, XG., Chen, HY. et al. Molecular dynamics simulation on microstructure evolution during solidification of copper nanoparticles. Journal of the Korean Physical Society 62, 1645–1651 (2013). https://doi.org/10.3938/jkps.62.1645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1645

Keywords

Navigation