Journal of the Korean Physical Society

, Volume 76, Issue 3, pp 251–256 | Cite as

Propeller-based Underwater Piezoelectric Energy Harvesting System for an Autonomous IoT Sensor System

  • Sebin Kim
  • Jae Yong Cho
  • Deok Hwan Jeon
  • Wonseop Hwang
  • Yewon Song
  • Se Yeong Jeong
  • Sin Woo Jeong
  • Hong Hee Yoo
  • Tae Hyun SungEmail author


While there is a demand for energy harvesting in environments with water, such as rivers, lakes seas, it has been difficult to use energy harvesting, especially piezoelectricity, because of the waterproof problem and the low output scale. Here, we report a propeller-based underwater piezoelectric energy harvester consisting of a propeller, hitting sticks and a piezoelectric module. The hitting sticks spin with a rotating axis connected to a propeller rotated by water flow and hit a piezoelectric cantilever beam. Unlike previous tip mass method, a newly applied technique makes it possible to match a frequency by easily controlling the bending length of a piezoelectric module using an acrylic plate to find the maximum output power. For reliability, we performed an experiment at 1.2 m/s, which is the actual water flow rate of the Han River in South Korea, and a frequency of 24.5 Hz occurred with four hitting sticks. The frequency-matched bending length was 80 mm (acrylic plate length: 10 mm). Then, impedance matching was carried out: At a resistance of 10.8 kΩ, an output power of 17 mWrms and a power density of 57.4 mW/cm3 were obtained. This result is one of the highest results in a field of similar piezoelectric energy harvesting devices considering challenging conditions that occur in real environments. Finally, the system was applied to an LED light system, one of applications under water, and succeeded in operating a total of 972 LEDs with only one piezoelectric device. This research proves the potential and the feasibility of applying a piezoelectric energy harvesting system to a real underwater environment.


Energy harvesting Piezoelectric Frequency matching Underwater Autonomous system LED light 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the program for fostering next-generation researchers in engineering of National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT (No. 2017H1D8A2032495).


  1. [1]
    R. K. Pachauri et al., Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (Ipcc, Geneva, 2014), p. 151.Google Scholar
  2. [2]
    IEA, World Energy Outlook 2016 (2016), Paris: OECD/IEA, p. 684.Google Scholar
  3. [3]
    I. Ziouani et al., Int. J. Elec. Power. 95, 188 (2018).CrossRefGoogle Scholar
  4. [4]
    M. Kim and S. Bae, Appl. Energ. 188, 444 (2017).CrossRefGoogle Scholar
  5. [5]
    C. R. Bowen, H. A. Kim, P. M. Weaver and S. Dunn, Energ. Environ. Sci. 7, 25 (2014).CrossRefGoogle Scholar
  6. [6]
    Y. Oh et al., Int. J. Pr. Eng. Man.-Gt. 6, 4 (2019).Google Scholar
  7. [7]
    J. H. Park, T. W. Lim, S. D. Kim and S. H. Park, Int. J. Pr. Eng. Man.-Gt. 3, 253 (2016).Google Scholar
  8. [8]
    A. Erturk and D. J. Inman, Piezoelectric energy harvesting (John Wiley & Sons, Hoboken, 2011).CrossRefGoogle Scholar
  9. [9]
    K. A. Cook-Chennault, N. Thambi and A. M. Sastry, Smart Mater. Struct. 17, 043001 (2018).ADSCrossRefGoogle Scholar
  10. [10]
    S. Priya, Appl. Phys. Lett. 87, 184101 (2015).ADSCrossRefGoogle Scholar
  11. [11]
    S. Priya, C. T. Chen, D. Fye and J. Zahnd, Jpn. J. Appl. Phys. 44, L104 (2004).CrossRefGoogle Scholar
  12. [12]
    J. Kan et al., Renew. Energ. 97, 210 (2016).CrossRefGoogle Scholar
  13. [13]
    S. Roundy et al., IEEE Pervas. Comput. 4, 28 (2005).CrossRefGoogle Scholar
  14. [14]
    D. L. Churchill, M. J. Hamel, C. P. Townsend and S. W. Arms, SPIE 5055, 319 (2013).Google Scholar
  15. [15]
    C. I. Kim et al., J. Korean Inst. Electr. Electron. Mater. Eng. 24, 554 (2011).Google Scholar
  16. [16]
    S. Pobering and N. Schwesinger, in 2004 International Conference on MEMS, NANO and Smart Systems (IC-MENS’04) (IEEE, Banff, 2004), p. 480.CrossRefGoogle Scholar
  17. [17]
    G. W. Taylor et al., IEEE J. Oceanic Eng. 26, 539 (2001).ADSCrossRefGoogle Scholar
  18. [18]
    Y. C. Shu and I. C. Lien, Smart Mater. Struct. 15, 1499 (2006).ADSCrossRefGoogle Scholar
  19. [19]
    L. Mateu and F. Moll, J. Intel. Mat. Syst. Str. 16, 835 (2005).CrossRefGoogle Scholar
  20. [20]
    N. M. White, P. Glynne-Jones and S. P. Beeby, Smart Mater. Struct. 10, 850 (2001).ADSCrossRefGoogle Scholar
  21. [21]
    Y. C. Shu and I. C. Lien, J. Micromech. Microeng. 16, 2429 (2006).ADSCrossRefGoogle Scholar
  22. [22]
    Y. Yoon and C. Lee, Mater. Sci. Eng. 2005, Seoul, Korea: Hantee Media.Google Scholar
  23. [23]
    P. J. Cornwell, J. Goethal, J. Kowko and M. Damianakis, J. Intel. Mat. Syst. Str. 16, 825 (2015).CrossRefGoogle Scholar
  24. [24]
    S. N. Chen, G. J. Wang and M. C. Chien, Mechatronics 16, 379 (2006).CrossRefGoogle Scholar
  25. [25]
    D. Guyomar, A. Badel, E. Lefeuvre and C. Richard, IEEE T. Ultrason. Ferr. 52, 584 (2005).CrossRefGoogle Scholar
  26. [26]
    J. Y. Cho et al., in Electrical Engineering and Energy Conversion Systems Conference Spring Conference 2015 (2015), p. 268.Google Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  • Sebin Kim
    • 1
  • Jae Yong Cho
    • 1
  • Deok Hwan Jeon
    • 1
  • Wonseop Hwang
    • 1
  • Yewon Song
    • 1
  • Se Yeong Jeong
    • 1
  • Sin Woo Jeong
    • 2
  • Hong Hee Yoo
    • 2
  • Tae Hyun Sung
    • 1
    Email author
  1. 1.Department of Electrical EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of Mechanical EngineeringHanyang UniversitySeoulKorea

Personalised recommendations