Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum Capacitance in Dual-gated Graphene FETs with AlOx Insulating Layer

  • 10 Accesses

Abstract

Quantum capacitance (Cq), which arises from the lack of charge carriers in low dimensional metallic materials, can be used to explore intrinsic properties of materials such as their density of states or residual carrier density when properly extracted. Here, Cq is extracted from the measured total capacitance of graphene-based devices using a dual-gated FET configuration with an oxidized aluminum/aluminum top-gate at room temperature. Acquired Cq is well in agreement with a theory for ideal graphene except for near Dirac point. The discrepancy in values near Dirac point is then adjusted by considering extra residual carrier density induced from charged impurities at finite temperature. The modified theory with residual carriers shows a great agreement with Cq measurements with the extracted residual carrier density of n* = 3.58 × 1011 cm−2.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    K. S. Novoselov et al., Nature 438, 197 (2005).

  2. [2]

    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

  3. [3]

    A. H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009).

  4. [4]

    S. Luryi, Appl. Phys. Lett. 52, 501 (1988).

  5. [5]

    Z. Chen and J. Appenzeller, in 2008 IEEE international electron devices meeting (IEEE, 2008), p. 1.

  6. [6]

    S. Droscher et al., Phys. Scr. 2012, 014009 (2012).

  7. [7]

    H. Xu, Z. Zhang and L-M. Peng, Appl. Phys. Lett. 98, 133122 (2011).

  8. [8]

    K. Nagashio, T. Nishimura and A. Toriumi, Appl. Phys. Lett. 102, 173507 (2013).

  9. [9]

    W. Li et al., Sci. Rep. 3, 1772 (2013).

  10. [10]

    H. Xu et al., ACS Nano 5, 2340 (2011).

  11. [11]

    G. Yu et al., Proc. Natl. Acad. Sci. U.S.A. 110, 3282 (2013).

  12. [12]

    J. Xia, F. Chen, J. Li and N. Tao, Nat. Nanotechnol. 4, 505 (2009).

  13. [13]

    S. Kim et al., Appl. Phys. Lett. 94, 062107 (2009).

  14. [14]

    I. Zailer et al., Semicond. Sci. Technol. 11, 1235 (1996).

  15. [15]

    B. Huard et al., Phys. Rev. Lett. 98, 236803 (2007).

  16. [16]

    H. Miyazaki, S. Li, A. Kanda and K. Tsukagoshi, Semicond. Sci. Technol. 25, 034008 (2010).

  17. [17]

    C-C. Lu et al., ACS Nano 6, 4469 (2012).

  18. [18]

    E. Guerriero et al., Sci. Rep. 7, 2419 (2017).

  19. [19]

    B. Fallahazad et al., Appl. Phys. Lett. 100, 093112 (2012).

  20. [20]

    A. Lale et al., Thin Solid Films 666, 20 (2018).

  21. [21]

    C. M. Corbet et al., ACS Nano 8, 10480 (2014).

  22. [22]

    J. Martin et al., Nat. Phys. 4, 144 (2008).

  23. [23]

    T. Fang, A. Konar, H. Xing and D. Jena, Appl. Phys. Lett. 91, 092109 (2007).

  24. [24]

    S. Adam, E. Hwang, V. Galitski and S. D. Sarma, Proc. Natl. Acad. Sci. U.S.A. 104, 18392 (2007).

  25. [25]

    H. Z. Zhong et al., AIP Adv. 5, 057136 (2015).

Download references

Acknowledgments

The authors gratefully acknowledge support by GIST Research Institute (GRI) grant funded by the GIST in 2019.

Author information

Correspondence to Sungbae Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ju, W., Lee, S. Quantum Capacitance in Dual-gated Graphene FETs with AlOx Insulating Layer. J. Korean Phys. Soc. 76, 243–246 (2020). https://doi.org/10.3938/jkps.76.243

Download citation

Keywords

  • Graphene
  • Quantum capacitance
  • Dual-gated field-effect transistor
  • Oxidized aluminum