Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Lanthanum Doping into A-sites of BaBiO3 via Thin Film Synthesis

  • 1 Accesses

Abstract

BaBiO3 is an insulator with perovskite structure. While the hole doping of BaBiO3 has been achieved long ago, its electron doping has not been realized yet because trivalent La ions, for example, tend to substitute for tetravalent Bi ions in B sites rather than divalent Ba ions in A-sites. We have used thin film synthesis to substitute La ions for Ba ions in BaBiO3; we first deposit, on a substrate, a buffer layer of BaBiO3 to overcome the lattice mismatch and then deposit a triple unit of a monolayer of Ba-deficit BaBiO3, the necessary amount of La2O3 to fill in the A-site vacancies, and lastly a monolayer of pure BaBiO3. This triple unit of Ba-deficit Ba1−xBiO3/La2O3/pure BaBiO3 is repeated several times for a certain thickness sample, and then the whole structure is treated thermally at 550 °C. Scanning TEM image analysis confirms that La ions go indeed to the A-sites and La doped BaBiO3 remains in perovskite structure. It is found that La substitution for Ba in BaBiO3 causes the Raman peak related to the breathing mode of BaBiO3 to decrease in intensity as a function of the doping level. Dielectric measurements of La doped BaBiO3 also reveal an upward shift in temperature and associated relaxation behaviors for the octahedral tilt-driven structural transition which occurs at Tc ∼ 140 K for pure BaBiO3.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

  2. [2]

    B. Yan, M. Jansen and C. Felser, Nat. Phys. 9, 709 (2013).

  3. [3]

    R. J. Cava et al., Nature 332, 814 (1988).

  4. [4]

    S. Kambe et al., Solid State Ion. 108, 307 (1998).

  5. [5]

    Y. Luo, X. Li and X. Liu, Adv. Mater. Sci. Eng. 2009, 383842 (2009).

  6. [6]

    M. Shizuya et al., Physica C 357–360, 169 (2001).

  7. [7]

    M. Wolocyrz, L. Kepinski and R. Horyn, J. Solid State Chem. 116, 72 (1995).

  8. [8]

    X. L. Chen, W. Eysel and J. Q. Li, J. Solid State Chem. 304, 300 (1996).

  9. [9]

    S. Obbade, M. Drache, P. Conflant and E. Suard, J. Solid State Chem. 162, 10 (2001).

  10. [10]

    A. Biswas, M. Talha, A. Kashir and Y. H. Jeong, Curr. Appl. Phys. 19, 207 (2019).

  11. [11]

    T. Makita and H. Abe, Jpn. J. Appl. Phys. 36, L96 (1997).

  12. [12]

    R. L. Bouwmeester et al., Phys. Status Solidi (RRL)-Rapid Res. Lett. 1800679 (2019).

  13. [13]

    A. Biswas, C. H. Yang, R. Ramesh and Y. H. Jeong, Prog. Surf. Sci. 92, 117 (2017).

  14. [14]

    M. Bonholzer, M. Lorenz and M. Grundmann, Phys. Status Solidi Appl. Mater. Sci. 211, 2621 (2014).

  15. [15]

    B. Yan, M. Jasen and C. Felser, Supplementary information, Nat. Phys. 9, 1 (2013).

  16. [16]

    H. G. Lee et al., APLMater. 6, 016107 (2018).

  17. [17]

    D. T. Harris et al., arXiv:1812.08589.

  18. [18]

    M. A. Islam, J. M. Rondinelli and J. E. Spanier, J. Phys.: Condens. Mat. 25, 175902 (2013).

  19. [19]

    B. J. Kennedy et al., Acta Crystallogr. B 62, 537 (2006).

  20. [20]

    G. Kim et al., Phys. Rev. Lett. 115, 226402 (2015).

  21. [21]

    S. Tajima et al., Phys. Rev. B 46, 1232 (1992).

  22. [22]

    S. Sugai, Phys. Rev. B 35, 3621 (1987).

  23. [23]

    S. Sugai, Solid State Commun. 72, 1187 (1989).

  24. [24]

    S. Sugai, Y. Enomoto and T. Murakami, Physica B 165–166, 1241 (1990).

  25. [25]

    L. Gasparov et al., J. Raman Spectrosc. 45, 465 (2014).

  26. [26]

    D. E. Cox and A. W. Sleight, Solid State Commun. 19, 969 (1976).

  27. [27]

    R. Ray et al., J. Alloys Compd. 705, 497 (2017).

  28. [28]

    A. A. Bokov and Z. G. Ye, J. Mater. Sci. 41, 31 (2006).

  29. [29]

    A. Khazraie, K. Foyevtsova, I. Elfimov and G. A. Sawatzky, Phys. Rev. B 97, 075103 (2018).

  30. [30]

    B. Khamari and B. R. K. Nanda, arXiv: 1901.08751v1 (2019).

Download references

Acknowledgments

We thank Yong Woo Lee and Eun Soo Ahn for the help in carrying out the experiment. We also thank Ali Reza Kashir for helpful discussion. STEM/EDS measurements were performed at the National Institute of Nano Technology (NINT) of POSTECH. This work was partially supported by National Research Foundation (NRF) of Korea (2015R1D1A1A02062239 and 2018R1A6075964) funded by the Korean Government.

Author information

Correspondence to M. Talha or Y. H. Jeong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talha, M., Jeong, Y.H. Lanthanum Doping into A-sites of BaBiO3 via Thin Film Synthesis. J. Korean Phys. Soc. 76, 215–220 (2020). https://doi.org/10.3938/jkps.76.215

Download citation

Keywords

  • Electron doped BaBiO3
  • Breathing mode
  • Octahedral tilting distortions
  • Raman spectroscopy
  • Dielectric constant