Advertisement

Journal of the Korean Physical Society

, Volume 76, Issue 1, pp 19–26 | Cite as

Improved Pupil-Size Diversity Technology for High-Resolution Imaging with Faint Objects

  • Xinxin Yang
  • Ge Ren
  • Haotong Ma
  • Qi Peng
  • Yufeng Tan
  • Jihong WangEmail author
Article
  • 7 Downloads

Abstract

Phase aberration is one of the prime factors that degrade the quality of observed images. Pupil-size diversity technology (PSDT) is a newly developed post-processing method for aberration correction and image reconstruction. However, images reconstructed using PSDT suffer from massive grains when imaging astronomical faint objects, which extremely limits its further application. In this paper, we propose an improved PSDT with embedded denoising reprocessing to overcome this drawback. Diversity raw images, generated by modulating the size of the pupil, are firstly processed by blocking-matching and 3D filtering (BM3D), a state-of-art denoising algorithm. Then, the traditional PSDT can be employed to estimate the wavefront and reconstruct a high-resolution image. Both numerical simulations and experiment demonstrations show that our proposed strategy exhibits superior performance for aberrations correction and image restoration of faint objects in view of its efficiency and robustness. Being capable of realizing high-resolution imaging with faint objects, this proposed method may have important application prospects in the fields of astronomical object detection, remote sensing, etc.

Keywords

Wavefront sensing Image restoration Pupil-size diversity technology BM3D 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61205144 and 61775239).

References

  1. [1]
    R. A. Gonsalves, Opt. Eng. 21, 829 (1982).ADSCrossRefGoogle Scholar
  2. [2]
    R. G. Paxman and J. R. Fienup, J. Opt. Soc. Am. A 5, 914 (1988).ADSCrossRefGoogle Scholar
  3. [3]
    A. E. Siegman, Appl. Opt. 32, 5893 (1993).ADSCrossRefGoogle Scholar
  4. [4]
    L. Noethe, Prog.Opt. 43, 3 (2002).ADSGoogle Scholar
  5. [5]
    J. R. Fienup, Appl. Opt. 52, 45 (2013).ADSCrossRefGoogle Scholar
  6. [6]
    P. Bao, F. Zhang, G. Pedrini and W. Osten, Opt. Lett. 33, 309 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    J. R. Fienup, J. C. Marron, T. J. Schulz and J. H. Seldin, Appl. Opt. 32, 1747 (1993).ADSCrossRefGoogle Scholar
  8. [8]
    P. M. Blanchard, D. J. Fisher, S. C. Woods and A. H. Greenaway, Appl. Opt. 39, 6649 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    N. Miyamura, Opt. Eng. 48, 128201 (2009).ADSCrossRefGoogle Scholar
  10. [10]
    J. R. Fienup, R. G. Paxman and T. J. Schulz, J. Opt. Soc. Am. A 9, 1072 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    M. R. Bolcar and J. R. Fienup, Appl. Opt. 48, A5 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    P. Bao, F. Zhang, G. Pedrini and W. Osten, Opt. Lett. 33, 309 (2008).ADSCrossRefGoogle Scholar
  13. [13]
    A. Mazine, K. Heggarty, Appl. Opt. 50, 2679 (2011).ADSCrossRefGoogle Scholar
  14. [14]
    Z. Xie et al., IEEE Photon. J. 8, 1 (2016).Google Scholar
  15. [15]
    H. Yu et al., Opt. Express 24, 22034 (2016).ADSCrossRefGoogle Scholar
  16. [16]
    K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, IEEE Trans. Image Process. 16, 2080 (2007).ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Proc. SPIE 6064, 606414 (2006).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2020

Authors and Affiliations

  • Xinxin Yang
    • 1
    • 2
    • 3
  • Ge Ren
    • 1
    • 2
  • Haotong Ma
    • 1
    • 2
  • Qi Peng
    • 1
    • 2
  • Yufeng Tan
    • 1
    • 2
  • Jihong Wang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Optical EngineeringChinese Academy of SciencesChengduChina
  2. 2.Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations