Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 9, pp 735–741 | Cite as

Modified Stack Layer for a Two-Step Process for High Efficiency CZTSe Solar Cell

  • Jiwon Lee
  • Gyuho Han
  • JunHo KimEmail author
Article
  • 17 Downloads

Abstract

For kesterite Cu2ZnSnSe4 (CZTSe) solar cells, the CZTSe absorber is usually fabricated using a two-step process, in which the CZTSe absorber is made by using post-selenization of a sputtered metal stack film. In the post-selenized CZTSe film, a rough surface, voids, and small-grained structures at bottom near the Mo back contact are frequently observed. To avoid these inferior features, we designed and fabricated a new modified stack layer that showed compact and larger grains with no voids and with small-grain-free near the bottom side. Several measurements, such as X-ray diffraction, Raman spectroscopy, photoluminescence, and time-resolved photoluminescence measurements, showed that the selenized film from the newly designed stack layer had high crystal quality. With the fabricated absorber, we made two types of CZTSe solar cells, one with a CdS buffer and the other with a (Zn,Sn)O buffer. The (Zn,Sn)O- buffered CZTSe solar cell showed a power conversion efficiency of 8.31%, which is comparable to the 8.84% of the CdS-buffered CZTSe solar cell. Our results indicates that the CZTSe solar cells made by using our newly designed stack layer and a (Zn,Sn)O buffer are promising for high-efficiency Cd-free CZTSe solar cells.

Keywords

CZTSe Solar cell Film growth Stack layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2016M1A2A2937010, NRF-2017R1A 2B2006223) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20183020010970).

References

  1. [1]
    D. B. Mitzi et al., Sol. Energy Mater. Sol. Cells 95, 1421 (2011).CrossRefGoogle Scholar
  2. [2]
    W. Wang et al., Adv. Energy Mater. 4, 1301465 (2014).CrossRefGoogle Scholar
  3. [3]
    K. Yang et al., J. Mater. Chem. A 4, 10151 (2016).CrossRefGoogle Scholar
  4. [4]
    S. Siebentritt and S. Schorr, Prog. Photovolt: Res. Appl. 20, 512 (2012).CrossRefGoogle Scholar
  5. [5]
    W. Wang et al., Energy Environ. Sci. 7, 1029 (2014).CrossRefGoogle Scholar
  6. [6]
    K. Ito and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).ADSCrossRefGoogle Scholar
  7. [7]
    K. Yang et al., Nat. Commun. 10, 2959 (2019).ADSCrossRefGoogle Scholar
  8. [8]
    M. A. Green et al., Prog. Photovoltaics Res. Appl. 27, 565 (2019).CrossRefGoogle Scholar
  9. [9]
    S. Bag et al., Energy Environ. Sci. 5, 7060 (2012).CrossRefGoogle Scholar
  10. [10]
    W. Ki and H. W. Hillhouse, Adv. Energy Mater. 1, 732 (2011).CrossRefGoogle Scholar
  11. [11]
    J. J. Scragg et al., Prog. Photovoltaics Res. Appl. 22, 10 (2012).CrossRefGoogle Scholar
  12. [12]
    J. Li et al., Sol. Energy Mater. Sol. Cells 149, 242 (2016).ADSCrossRefGoogle Scholar
  13. [13]
    K. Wang et al., Appl. Phys. Lett. 97, 143508 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    Y. S. Lee et al., Adv. Energy Mater. 5, 1401372 (2015).CrossRefGoogle Scholar
  15. [15]
    S. M. Pawar et al., Electrochim. Acta 55, 4057 (2010).CrossRefGoogle Scholar
  16. [16]
    L. Guo et al., Prog. Photovoltaics Res. Appl. 22, 58 (2014).CrossRefGoogle Scholar
  17. [17]
    N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films 515, 5949 (2007).ADSCrossRefGoogle Scholar
  18. [18]
    Y. B. Kishore Kumar, P. Uday Bhaskar, G. Suresh Babu and V. Sundara Raja, Phys. Status Solidi A 207, 149 (2010).ADSCrossRefGoogle Scholar
  19. [19]
    H. Yoo and J. Kim, Thin Solid Films 518, 6567 (2010).ADSCrossRefGoogle Scholar
  20. [20]
    P. A. Fernandes, P. M. P. Salom´e, A. F. da Cunha and Björn-Arvid Schubert, Thin Solid Films 519, 7382 (2010).ADSCrossRefGoogle Scholar
  21. [21]
    A. Fairbrother et al., Sol. Energy Mater. Sol. Cells 112, 97 (2013).CrossRefGoogle Scholar
  22. [22]
    A. Fairbrother et al., J. Phys. Chem. C 118, 17291 (2014).CrossRefGoogle Scholar
  23. [23]
    S. W. Shin et al., Sol. Energy Mater. Sol. Cells 95, 3202 (2011).CrossRefGoogle Scholar
  24. [24]
    A. Weber et al., Phys. Status Solidi C 6, 1245 (2009).ADSCrossRefGoogle Scholar
  25. [25]
    G. Brammertz et al., Appl. Phys. Lett. 103, 163904 (2013).ADSCrossRefGoogle Scholar
  26. [26]
    F. Liu et al., Sol. Energy Mater. Sol. Cells 94, 2431 (2010).CrossRefGoogle Scholar
  27. [27]
    T. P. Dhakala et al., Solar Energy 100, 23 (2014).ADSCrossRefGoogle Scholar
  28. [28]
    J. Lindahl et al., Prog. Photovoltaics Res. Appl. 21, 1588 (2013).CrossRefGoogle Scholar
  29. [29]
    J. Lindahl et al., Sol. Energy Mater. Sol. Cells 114, 684 (2016).CrossRefGoogle Scholar
  30. [30]
    X. Li et al., Sol. Energy Mater. Sol. Cells 157, 101 (2016).ADSCrossRefGoogle Scholar
  31. [31]
    A. Hultqvist, C. Platzer-Björkman, U. Zimmermann, M. Edoff and T. Törndahl, Prog. Photovoltaics Res. Appl. 20, 883 (2012).CrossRefGoogle Scholar
  32. [32]
    S. Y. Kim et al., Nano Energy 59, 399 (2019).CrossRefGoogle Scholar
  33. [33]
    D. B. Khadka and J. Kim, J. Phys. Chem. C 119, 12226 (2015).CrossRefGoogle Scholar
  34. [34]
    H. Du et al., J. Appl. Phys. 115, 173502 (2014).ADSCrossRefGoogle Scholar
  35. [35]
    T. R. Rana et al., Sustainable Energy Fuels 1, 1981 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsIncheon National UniversityIncheonKorea

Personalised recommendations