Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 5, pp 409–414 | Cite as

Prediction of the Current-Voltage Characteristics and the Bipolar Resistive Switching Mechanism in Polymer-Based Sandwiched Structures

  • Muhammad Naeem AwaisEmail author
  • Muhammad Naeem Shehzad
Article
  • 8 Downloads

Abstract

The prediction of the current-voltage (IV) characteristics of resistive switching devices has remained a challenge before their physical realization. This research work addresses the prediction of the IV characteristics and the bipolar switching mechanism of polymer-based resistive switches by examining their structures before their fabrication. The research was carried out through an analytical study of the device structure, thereby correlating the predicted IV curve to the in-situ IV characteristics of the device. Different types of the device structures were considered, depending upon the work function of the top and the bottom electrodes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels of the sandwiched layer. We concluded that the defects/traps within the sandwiched layer lead to the interface effect being the dominant switching mechanism driving the polymer-based resistive switches. Furthermore, we also found that the devices following the interface effect are driven from trap-limited space-charge-limited current (SCLC) conduction to trap-free SCLC conduction as their current conduction mechanisms.

Keywords

Resistive switch Current conduction mechanism Resistive switching mechanism Interface effect Polymer Traps 

PACS numbers

85.35.−p 85.65.+h 85.30.De 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Department of Electrical and Computer Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan.

References

  1. [1]
    J. J. Yang, D. B. Strukov and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).ADSCrossRefGoogle Scholar
  2. [2]
    S. K. Hong, J. E. Kim, S. O. Kim and B. J. Cho, J. Appl. Phys. 110, 044506 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    M. N. Awais and K. H. Choi, Electron. Lett. 51, 2147 (2015).CrossRefGoogle Scholar
  4. [4]
    H. Nili et al., Adv. Funct. Mater. 24, 1 (2014).CrossRefGoogle Scholar
  5. [5]
    R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Funct. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
  7. [7]
    C. Y. Lin et al., J. Appl. Phys. 102, 094101 (2007).ADSCrossRefGoogle Scholar
  8. [8]
    Y. Yang et al., Adv. Funct. Mater. 16, 1001 (2006).CrossRefGoogle Scholar
  9. [9]
    Q. D. Ling et al., Prog. Polym. Sci. 33, 917 (2008).CrossRefGoogle Scholar
  10. [10]
    M. Mustafa, M. N. Awais, G. Poonia and K. H. Choi, J. Korean Phys. Soc. 61, 470 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    T. Lee and Y. Chen, Mater. Res. Bull. 37, 144 (2012).CrossRefGoogle Scholar
  12. [12]
    M. Lin et al., Polymers 9, 1 (2017).CrossRefGoogle Scholar
  13. [13]
    M. C. Lia et al., Solid State Electronics 148, 1 (2018).ADSCrossRefGoogle Scholar
  14. [14]
    M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).Google Scholar
  15. [15]
    M. Bajpai et al., Synth. Met. 160, 1740 (2010).CrossRefGoogle Scholar
  16. [16]
    M. Arif et al., Phys. Rev. B 75, 195202 (2007).ADSCrossRefGoogle Scholar
  17. [17]
    T. W. Kim et al., Appl. Phys. Lett. 92, 253308 (2008).ADSCrossRefGoogle Scholar
  18. [18]
    M. N. Awais and K. H. Choi, Electron. Mater. Lett. 10, 601 (2014).ADSCrossRefGoogle Scholar
  19. [19]
    M. N. Awais et al., Micro Nano Lett. 11, 712 (2016).CrossRefGoogle Scholar
  20. [20]
    C. Wu, F. Li, T. Guo and T. W. Kim, Org. Electron. 13, 178 (2012).CrossRefGoogle Scholar
  21. [21]
    T. Ouisse and O. Stephan, Org. Electron. 5, 251 (2004).CrossRefGoogle Scholar
  22. [22]
    J. A. Rohr et al., J. Phys.: Condens. Matter 30, 105901 (2018).ADSGoogle Scholar
  23. [23]
    Y. Sadaoka and Y. Sakai, J. Chem. Soc. Faraday Trans. II 72, 1911 (1976).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Muhammad Naeem Awais
    • 1
    Email author
  • Muhammad Naeem Shehzad
    • 1
  1. 1.Department of Electrical and Computer EngineeringCOMSATS University IslamabadLahorePakistan

Personalised recommendations