Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 5, pp 404–408 | Cite as

Paraelectric Elastic Properties of Reduced and Heterovalently Doped BaTiO3 Single Crystals Studied by Using Brillouin Spectroscopy

  • Jeong Woo Lee
  • Jae-Hyeon KoEmail author
  • Krystian Roleder
  • D. Rytz
Article
  • 2 Downloads

Abstract

The effects of rhodium (Rh) doping on the elastic properties and phase transition behaviors of reduced BaTiO3 single crystals were investigated in the paraelectric phase by using Brillouin spectroscopy. The Rh doping induced changes in the elastic stiffness coefficients and the elastic anisotropy parameter. The degree of softening of (C11C12)/2 became more substantial with Rh doping, indicating that the polarization fluctuations were enhanced by heterovalent Rh3+ doping. This was supported by the much larger temperature range over which the nonzero birefringence was observed. Free charge carriers introduced by Rh doping and oxygen vacancies in the reduced BaTiO3 and their interactions with the lattice seem to be the origin of these anomalous changes in the elastic properties.

Keywords

Barium titanate Rh doping Elastic constants Brillouin scattering 

PACS numbers

77.80.−e 77.65.-Dq 78.35.+C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Hallym University Research Fund, 2019 (HRF-201907-013).

Supplementary material

40042_2019_4192_MOESM1_ESM.pdf (2.5 mb)
Paraelectric Elastic Properties of Reduced and Heterovalently Doped BaTiO3 Single Crystals Studied by Using Brillouin Spectroscopy

References

  1. [1]
    B. A. Wechsler, M. B. Klein, C. C. Nelson and R. N. Schwartz, Opt. Lett. 19, 536 (1994).ADSCrossRefGoogle Scholar
  2. [2]
    R. Scharfschwerdt, O. F. Schirmer, H. Hesse and D. Rytz, Appl. Phys. B 68, 807 (1999).ADSCrossRefGoogle Scholar
  3. [3]
    P. Mathey et al., Opt. Mater. 18, 69 (2001).ADSCrossRefGoogle Scholar
  4. [4]
    P. Mathey, P. Jullien and D. Rytz, Appl. Phys. Lett. 73, 3327 (1998).ADSCrossRefGoogle Scholar
  5. [5]
    J. Y. Chang et al., Opt. Commun. 153, 106 (1998).ADSCrossRefGoogle Scholar
  6. [6]
    S. Madeswaran et al., J. Cryst. Growth 266, 481 (2004).ADSCrossRefGoogle Scholar
  7. [7]
    R. Jayavel et al., Mater. Sci. Eng. B 120, 137 (2005).CrossRefGoogle Scholar
  8. [8]
    J.-H. Ko et al., Phase Trans. 85, 718 (2012).CrossRefGoogle Scholar
  9. [9]
    R. Vacher and L. Boyer, Phys. Rev. B 6, 639 (1972).ADSCrossRefGoogle Scholar
  10. [10]
    W. Rehwald, Adv. Phys. 22, 721 (1973).ADSCrossRefGoogle Scholar
  11. [11]
    J.-H. Ko et al., Appl. Phys. Lett. 93, 102905 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    J.-H. Ko et al., Phys. Rev. B 84, 094123 (2011).ADSCrossRefGoogle Scholar
  13. [13]
    E. K. H. Salje et al., Phys. Rev. B 87, 014106 (2013).ADSCrossRefGoogle Scholar
  14. [14]
    S. Kashida, I. Hatta, A. Ikushima and Y. Yamada, J. Phys. Soc. Jpn. 34, 997 (1973).ADSCrossRefGoogle Scholar
  15. [15]
    S. Tsukada, Y. Hiraki, Y. Akishige and S. Kojima, Phys. Rev. B 80, 012102 (2009).ADSCrossRefGoogle Scholar
  16. [16]
    Z. Li, M. Grimsditch, C. M. Foster and S.-K. Chan, J. Phys. Chem. Solids 57, 1433 (1996).ADSCrossRefGoogle Scholar
  17. [17]
    J.-H. Ko et al., Curr. Appl. Phys. 12, 1185 (2012).ADSCrossRefGoogle Scholar
  18. [18]
    J. W. Lee, J.-H. Ko, K. Roleder and D. Rytz, Appl. Phys. Lett. 114, 072901 (2019).ADSCrossRefGoogle Scholar
  19. [19]
    R. A. Cowley, Phys. Rev. B 13, 4877 (1976).ADSCrossRefGoogle Scholar
  20. [20]
    B. Zalar, V. V. Laguta and R. Blinc, Phys. Rev. Lett. 90, 037601 (2003).ADSCrossRefGoogle Scholar
  21. [21]
    B. Zalar et al., Phys. Rev. B 71, 064107 (2005).ADSCrossRefGoogle Scholar
  22. [22]
    C. Zener, Elasticity and Anelasticity of Metals (University of Chicago, Chicago, 1948).zbMATHGoogle Scholar
  23. [23]
    A. Ziebinśka et al., J. Phys.: Condens. Matter 20, 142202 (2008).ADSGoogle Scholar
  24. [24]
    A. Bussmann-Holder, H. Beige and G. Vlkel, Phys. Rev. B 79, 184111 (2009).ADSCrossRefGoogle Scholar
  25. [25]
    J.-H. Ko and S. Kojima, Appl. Phys. Lett. 91, 082903 (2007).ADSCrossRefGoogle Scholar
  26. [26]
    S. Furusawa, T. Suemoto and M. Ishigame, Phys. Rev. B 38, 12600 (1988).ADSCrossRefGoogle Scholar
  27. [27]
    D. Royer and E. Dieulesaint, Elastic Waves in Solids I (Springer, Berlin, 1999).zbMATHGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Jeong Woo Lee
    • 1
  • Jae-Hyeon Ko
    • 1
    Email author
  • Krystian Roleder
    • 2
  • D. Rytz
    • 3
  1. 1.Department of PhysicsHallym UniversityChuncheonKorea
  2. 2.Institute of PhysicsUniversity of SilesiaChorzówPoland
  3. 3.Forschungsinstitut fr mineralische und metallische Werkstoffe, Edelsteine/Edelmetalle GmbH (FEE)Idar-ObersteinGermany

Personalised recommendations