Advertisement

Journal of the Korean Physical Society

, Volume 75, Issue 1, pp 40–44 | Cite as

Characterization of the Electro-Optic Modulation Properties of a yz-Cut Potassium Niobate Single Crystal

  • Yung Kim
  • Kwang Jo LeeEmail author
Article

Abstract

We theoretically investigate the electro-optic (EO) effect in a yz-cut potassium niobate (KNbO3, KN) single crystal when a direct-current (DC) electric field is applied in the direction of [̅101]. We derived an analytical expression describing the change in the index ellipsoid under the applied DC electric field and solved its characteristic equation to obtain the refractive-index change induced by the EO effect. In order to show the practicality of our approach, we consider a classic application of the technique — an integrated Mach-Zehnder (MZ) modulator used for optical communication systems. The phase- and the intensity-modulation properties of the KN MZ modulator are discussed in detail, and all simulation results are compared with those for the lithium niobate (LN) counterpart that are widely used in current optical infrastructures. The results show that smaller-size or lower power-consuming EO modulators are feasible based on the proposed KN scheme due to its higher modulation efficiency.

Keywords

Polarization Birefringence Electro-optic modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by Basic Research Laboratory (BRL) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A4A1008 978). Korea Institute of Science and Technology (KIST) (2E29580-19-147).

References

  1. [1]
    P. Günter, Ferroelectrics 75, 5 (1987).CrossRefGoogle Scholar
  2. [2]
    P. Günter, Opt. Commun. 11, 285 (1974).ADSCrossRefGoogle Scholar
  3. [3]
    B. Zysset, I. Biaggio and P. Günter, J. Opt. Soc. Am. B 9, 380 (1992).ADSCrossRefGoogle Scholar
  4. [4]
    J.-C. Baumert et al., Appl. Phys. Lett. 46, 1018 (1985).ADSCrossRefGoogle Scholar
  5. [5]
    E. S. Polzik and H. J. Kimble, Opt. Lett. 16, 1400 (1991).ADSCrossRefGoogle Scholar
  6. [6]
    W. R. Bosenberg and R. H. Jarman, Opt. Lett. 18, 1323 (1993).ADSCrossRefGoogle Scholar
  7. [7]
    J.-P. Meyn et al., Opt. Lett. 24, 1154 (1999).ADSCrossRefGoogle Scholar
  8. [8]
    S. H. Bae et al., Opt. Commun. 283, 1894 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    K. J. Lee, S. Lee and H. Shin, Appl. Opt. 55, 9791 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    J. A. Abernethy, C. B. E. Gawith, R. W. Eason and P. G. R. Smith, Appl. Phys. Lett. 81, 2514 (2002).ADSCrossRefGoogle Scholar
  11. [11]
    Y. Y. Lin et al., Opt. Lett. 32, 545 (2007).ADSCrossRefGoogle Scholar
  12. [12]
    L. Katz and H. D. Megaw, Acta Cryst. 22, 639 (1967).CrossRefGoogle Scholar
  13. [13]
    A. Yariv and P. Yeh, Photonics, 6th ed. (Oxford University Press, New York, 2007).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsKyung Hee UniversityYonginKorea

Personalised recommendations